鉄道構造物等設計標準・同解説コンクリート構造物「性能照査の手引き」 正誤表

平成22年12月現在

ページ	箇所	誤	正(および追記)
5	(4) PRC桁 PC鋼材の品質:種類	SWPR7B12T12.7 SWPR19T19.3	SWPR 7BL 12T12.7 SWPR 19L 1T19.3
	(4) <i>PRC</i> 桁 <i>PC</i> 鋼材の品質: 見掛けのリラクセーション	5%	1.5%
35	(b)降伏曲げモーメント <i>My</i>	9.4により,	9.3により、
57	①鉄筋が降伏するとしたとき	εs=εysd+εs0=(fysd+fs0)/Es として, ひずみ分布を仮定し, 次式で合力を算定.	$\varepsilon_s = \varepsilon_{ysd} + \varepsilon_{s0} = (f_{ysd} - f_{s0})/E_s$ として,ひずみ分布を仮定し, 次式で合力を算定.
		$T_{st} = A_{st} \cdot \sigma_{st} = A_{st} \cdot (f_{syd} + f_{s0})$	$T_{st} = A_{st} \cdot \sigma_{st} = A_{st} \cdot (f_{syd} - f_{s0})$
67	13.1 ラーメン高架橋ゲルバー 桁受部	同様に、設計限界値として、・・・・・による.	同様に、設計限界値として、・・・・による。 (削除)
77	14.3 ラーメン高架橋における 分担水平力の計算について	柱,地中梁 : 全断面有効剛性の 0.5倍	(追記) 柱, <mark>中層梁</mark> ,地中梁 : 全断面有効剛性の 0.5 倍
82	2)⊿msに考慮する事項	地震時以外: $\triangle ns = (H_{bd} \cdot \sum t_e) / (A \cdot G)$ 地震時 : $\triangle ns = (H_{bd} \cdot \sum t_e) / (A \cdot G) + \triangle / 2$ ($L1$ 地震時)	地震時以外: $\triangle ns = (H_{bd} \cdot \sum t_e) / (A \cdot G)$ 地震時 : $\triangle ns = (H_{bd} \cdot \sum t_e) / (A \cdot G)$ + $\triangle / 2$ ($L1$ 地震時) (追記) : $\triangle ns = (H_{bd} \cdot \sum t_e) / (A \cdot G)$ + (下部工天端変位) ($L2$ 地震時)