鉃道総研報告

公益財団法人 鉃道総合技術研究所

夏季における通勤車両内の横流ファン送風の 影響を考慮した温熱快適性評価手法

遠藤	広晴*	榎並	祥太**	菊地	史倫**
吉江	幸子*	伊積	康彦***	野口	純#

Evaluation Method of Passenger Thermal Comfort Considering Effects of Airflow by Cross-flow Fan in Commuter Vehicles in Summer

Hiroharu ENDOH	Shota ENAMI	Fumitoshi KIKUCHI
Sachiko YOSHIE	Yasuhiko IZUMI	Jun NOGUCHI

The purpose of this study is to propose a method for evaluating passenger thermal comfort in non-steady state thermal environments with airflow by cross-flow fans in commuter trains in summer. The proposed method is composed of a human thermoregulation model applicable to non-steady state thermal environments and a statistical model derived from the results of experiments conducted in commuter trains in summer. To evaluate the thermal comfort considering the influence of a cyclic wind by cross-flow fans, the proposed method converts the cyclic wind to a constant wind speed equal to the total amount of heat loss from the whole-body calculated by human thermoregulation model. Applying the proposed method to our previous research, it was confirmed that the observed data and predictions are agree well.

キーワード:通勤車両,車内温熱環境,横流ファン,快適性評価,被験者実験

1. はじめに

現在. 都市部のほとんどの通勤車両には天井部に横流 ファンが設置されており、車両内の空気循環の他、乗客 への清涼感の提供という重要な役割を担っている。特 に,夏季においては、横流ファンは冷房の補助として乗 客の暑い不快感の低減に貢献していると考えられる。ま た、横流ファンによる風は寒い不快感の発生要因にもな り得るため、車載センサで捉えた気温・湿度・乗車率等 の車内熱負荷に応じた風速調節を行うなど、横流ファン 送風が乗客の快適性向上に寄与するよう様々な工夫がな されている¹⁾。一方,通勤車両内の温熱環境に対する乗 客からの不満の声は依然として多く寄せられている。よ り快適な車内温熱環境を実現するためには、横流ファン 送風環境を含む現状の車内温熱環境を乗客の快適性の観 点から的確かつ定量的に評価し,不快発生要因を把握す ることが重要である。しかしながら、通勤車両内の温熱 環境、特に横流ファン送風環境下での温熱快適性に関す る研究報告例は極めて少なく、当該環境下での乗客の快 適性を定量的に評価する手法は未だ確立されていない。

本研究の目的は,通勤車両内の横流ファン送風環境に 適用可能な温熱快適性評価手法を提案することである。 本研究では,筆者らが提案している通勤車両内の温熱快 適性評価手法²⁾(以後,「提案手法」)をベースに,横流ファ ン送風環境への適用方法を検討し,過去に実施した被験 者実験結果³⁾⁴⁾との比較により予測精度の検証を行った。

2. 温熱快適性評価手法

2.1 温熱指標 PMV · PPD

温熱環境と快適性の関係については、建築分野で古く から研究が行われており、集団の平均的な温冷感(以後、 「平均温冷感」),および温熱環境に満足できない人の割 合(以後、「熱的不満足者率」)を予測する指標として PMV (Predicted Mean Vote:予測平均温冷感申告),お よび PPD (Predicted Percentage of Dissatisfied:予測熱 的不満足者率)が提案されている⁵⁾。PMV は表1に示 す7段階尺度で平均温冷感を予測する。周囲温熱環境に よる人体の熱負荷量を熱平衡式により計算し,さらに、 その熱負荷量と被験者実験での温冷感申告値とを結びつ けた回帰式により計算される。人体の熱負荷量に影響を

表 1	PMV	尺度

cold	cool	slightly cool	neutral	slightly warm	warm	hot
-3	-2	-1	0	+1	+2	+3

1

文

論

^{*} 人間科学研究部 快適性工学研究室

^{**} 人間科学研究部 人間工学研究室

^{***} 構造物技術研究部 建築研究室

[#] 東日本旅客鉄道株式会社

与える主要素には、環境側では気温、湿度、放射温度、 気流速度(風速)、人側では、代謝量、着衣量の計6要 素あり(以後、「温熱6要素」)、PMVはこれら全ての 要素を用いて計算される。なお、PPDは被験者実験デー タを基に下式で定義されている。

$$PPD = 100 - 95exp \left\{ - \left(0.03353PMV^4 + 0.2179PMV^2 \right) \right\}$$
(1)

PMV・PPD は人の感覚量を直接予測する指標である ためわかりやすく、分野を問わず現在最も広く利用され ている温熱指標の一つである。

PMV・PPDの適用範囲は、建物室内でみられるよう な定常的な温熱環境である。また、式(1)で示した PMV と PPDの関係式は、季節に関わらず成立すると仮定さ れている。一方、通勤車両内の温熱環境は、温湿度や風 速の変動が大きい非定常的な温熱環境である²⁾。また、 人工気候室を用いた実験により、温冷感と快適性の関係 は季節により異なるという研究報告がある⁶⁾。筆者らが 実施した夏季の通勤車両内での被験者実験においても、 車内温度が上昇する状況において、PPDの予測誤差が 最大で 45pt (pt はパーセントの差の単位)程度と大きい ことを確認している²⁾。

2.2 夏季の通勤車両内の温熱快適性評価手法²⁾

提案手法の全体像を図1に示す。温熱6要素を入力 して人体が受ける熱負荷を計算し,次に,被験者実験デー タに基づく回帰式により平均温冷感・熱的不満足者率を 予測する流れはPMV・PPDを踏襲している。これに加 え,提案手法では「非定常温熱環境での生理状態を予測 可能な人体熱モデル」,および「通勤車両内で夏季に実 施した被験者実験データに基づく回帰式」を利用するこ とで, PMV・PPDの予測誤差を改善している。

前半部の「非定常温熱環境の生理状態を予測可能な人 体熱モデル」として,田辺らが開発した「65分割体温 調節モデル」(以後,「65MNモデル」)のアルゴリズム⁷⁾ を利用している。当該モデルは,人体が頭,胸,背中,腰, 肩,腕,手,大腿,下腿,足(四肢は左右に分割)の 16部位に分割され、さらに各部位はコア、筋肉、脂肪、 皮膚の4層に分割されている。同じ部位の4層は伝導に より熱交換し、人体表面の皮膚層は周囲環境と対流、放 射、蒸発による熱交換を行う。また、これら64部位と 中央血液溜まりと呼ばれる65番目の部位との間では血 流輸送による熱交換がなされる。体温調節系には発汗、 血流量調節、震え産熱があり、これらは、部位ごとに仮 定された中立温度と現状値との差を制御信号とした フィードバック制御として実装されている。

後半部の「通勤車両内で夏季に実施した被験者実験 データに基づく回帰式」として,夏季に実施した被験者 実験結果に基づいて導出した下式を利用している。

$$DyPMV = c + a_0 \cdot SET^* \tag{2}$$

 $DyPPD_{c}$

$$=\frac{100 \cdot exp(a_{c}DyPMV+b_{c})}{1+exp(a_{h}DyPMV+b_{h})+exp(a_{c}DyPMV+b_{c})}$$
(3)

DyPPD_h

$$=\frac{100 \cdot exp(a_{\rm h}DyPMV+b_{\rm h})}{1+exp(a_{\rm h}DyPMV+b_{\rm h})+exp(a_{\rm c}DyPMV+b_{\rm c})}$$
(4)

$$DyPPD = DyPPD_{\rm c} + DyPPD_{\rm h}$$
⁽⁵⁾

$$[c = -12.3, a_0 = 0.49, a_c = -1.23, b_c = -3.27, a_h]$$

= 1.15, $b_h = -1.28]$

式(2)のSET*(the New Standard Effective Temperature:標準新有効温度)は、65MNモデルで計算される 皮膚温,発汗の程度を表す皮膚ぬれ率、および皮膚表面 からの体熱放散量が同一となるような相対湿度50%の 気温として定義される「体感温度」に相当し、人体熱モ デル各部位で算出した部位別SET*を部位表面積比で重 み付け平均して導出している。同式(2)のDyPMVは乗 客の平均温冷感を予測する指標であり、その数値は後述 する被験者実験で使用した温冷感尺度に対応している

図1 夏季の通勤車両内の温熱快適性評価手法の全体像

(後掲の表3参照)。式(3)のDyPPDc,式(4)のDyP-PDhはそれぞれ車内温熱環境に対して「寒くて満足で きない」,「暑くて満足できない」と感じる乗客の割合を 予測する指標である。式(5)で両者を加算したDyPPD は暑さと寒さの両者の原因を含む熱的不満足者率の予測 値である。

式(1)で定義された PPD は、暑くも寒くもない中立 の温冷感(PMV=0)において最小となり、寒い側 (PMV<0)と暑い側(PMV>0)とで同様の増加傾向 となる対称形を仮定している(後掲の図6(b)参照)。 一方、提案手法では、寒さによる不満足者の発生と暑さ による不満足者の発生を分けた形で表される多項ロジス ティック回帰モデル(式(3),式(4))を採用し、夏季の 被験者実験データに基づいた曲線形状を得ている(後掲 の図6(a)参照)。結果として、DyPMV が-1(温冷 感尺度で「やや涼しい」)付近で DyPPD が最小値を取 る関係式となり、既往研究⁶⁾とも整合している。

提案手法により,夏季の通勤車両内の温熱快適性を PPDよりも精度よく予測できることが確認されている が²⁾,横流ファン送風環境への適用可能性についてはこ れまで未検討であった。

2.3 横流ファン送風環境への提案手法の適用方法

ここでは、提案手法を横流ファン送風環境に適用する 方法について述べる。通勤車両内で横流ファンが稼働し ている状況では、横流ファン付近に立っている乗客は、 ファンの回転周期に応じた周期的変動風を受ける。現状 では、横流ファンは15秒程度の周期で往復回転してお り¹⁾, 横流ファン付近の乗客の温冷感は 15 秒程度の周期 で変動していると考えられる。この瞬時的な感覚変動が 生じる一方で, 横流ファンからの風を一周期以上体感し たうえで判断される総合的な感覚もあると考えられ. 乗 車して暫く時間が経過すると,総合的な感覚により快/ 不快の判断がなされるものと推察される。本研究では, 乗客が継続して周期的変動風を受ける状況を想定し、一 周期以上体感したうえで判断される総合的な温熱感覚・ 快適性を評価対象とする。この総合的な温熱感覚を評価 するためには、その感覚に結びつく体感温度を導出する 必要がある。

本研究では、風速以外の温熱要素は実環境と同一とい う条件で、人体熱モデルにより計算される体熱放散量が 周期的変動風受風時と同等となる一定風速を「体熱放散 等価風速」と定義する。横流ファン送風環境に対する温 熱快適性評価(図1)を行う際は、実測風速を体熱放散 等価風速に変換してたうえで入力する。これにより、周 期的変動風を一周期以上体感した際の総合的な温熱感覚 に結びつく体感温度の導出が可能になると考えられる。 実環境値を体熱放散量の等価性(人への熱的影響の等価 性)に基づいて変換する操作は、従来の体感温度型の温 熱指標の計算概念に整合する。なお、実際の車内環境で は、横流ファンの設定強度が同一でも、様々な外乱によ り周期的変動風の風速ピーク値や平均値が変動する可能 性がある。これに対応するために、移動平均処理と同じ ように、事前に設定した区間長(本研究では 60 秒に設 定)を切り出して体熱放散等価風速を計算する、という 処理を時間軸上で移動しながら繰り返す方法により、全 評価対象時刻に対する体熱放散等価風速を得る。体熱放 散等価風速の計算手順の詳細は文献 8 を参照されたい。

3. 提案手法の精度検証方法

3.1 検証に使用する被験者実験の概要³⁾⁴⁾

提案手法の精度検証は,式(2)~式(4)の回帰式導出 とは別に実施した被験者実験データを基に行う。これら 実験の概要を以下に述べる。

3.1.1 実施時期,被験者,混雑条件

実験時期, 被験者属性, 混雑条件を表2に示す。表2 中の混雑率は 0.35m²/ 人を 100%と定義している。実験 は2015年および2017年の夏季に実施し、いずれの実 験も, 首都圏にある鉄道事業者の車両基地内に通勤車両 を留置した状態で実施した。被験者および測定センサ配 置の概要を図2に示す。実験1では混雑率100%未満条 件(図2(a)に示す横流ファン付近に被験者を配置), 実験2では混雑率120%条件(図2(b)の領域1と領 域2に15名程度の被験者を配置)および180%条件(図 2(b)の領域1に30名程度の被験者を配置)を実施し、 各混雑条件で横流ファンを停止した条件(以後,「横流 ファン停止条件」)および横流ファンを稼働した条件(以 後,「横流ファン稼働条件」)を実施した。車内気温に関 しては, 空調制御を手動操作し, 通勤車両内で観測され た気温が上昇・下降する状況²⁾を模擬した。なお、実 験2は、異なる被験者で2日間実施した。

被験者は評価開始5~10分前に隣接車両から実験用 車両に移動し,通動車両内の所定の位置に立って温熱環 境を体感した。評価終了後は,被験者は隣接車両で着座 休憩した。着衣量を被験者間で統一するため,被験者の 服装は下着以外同一とし,実験1では長袖シャツ,半袖 下着,長ズボン,軍足とし,実験2では半袖Tシャツ, 長ズボン,軍足とした。実験中の様子を図3に示す。な お,被験者には,実験の目的,内容を十分に説明し,イ ンフォームドコンセントを得た。

3.1.2 主観評価方法

被験者は,実験1では1.5分間隔,実験2では2分間 隔で温冷感,発汗感,満足度等に関する主観評価を行っ た。主観評価項目とその評価尺度の例を表3に示す。主 観評価にあたり,被験者には音やにおい等の温熱環境以

安佐口	被験	者数	平均年	齢 (SD)	混雑条件
天旭口	男性	女性	男性	女性	[%]
実験1	12	11	35.8	30.8	1000/ 志達
2015/7/3	12	11	(10.7)	(8.0)	100%不同
実験2-1	15	16	29.4	32.9	1200/ 1200/
2017/8/22	15	10	(9.3)	(8.7)	120%, 180%
実験2-2	1.5	16	32.5	33.5	1200/ 1200/
2017/8/28	15	10	(9.5)	(11.2)	120%, 180%

表2 実験時期, 被験者属性, 混雑条件⁸⁾

表3 主観評価項目と尺度の例⁸⁾

温冷感	をかせた 寒い 寒い ↓ ↓ ↓ -4 -3	ん 涼しい -2	やや 涼しい -1	中立 0	やや 暖かい +1	暖かい +2	やや 暑い +3	■ 目示 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本
発汗感	感	じない ギ	や感じる +1	感じ +2	る非	常に感じ 	3	
満足度	"満足でき	3""	満足できた	<u> 211"</u>	* (□	寒くて	□ 暑く	て)

図2 実験車両内での被験者・測定器配置(上面図)

外の要因を評価対象にしないよう教示した。また,満足 度評価に関しては,「通勤車両内の温熱環境として」満 足できるかできないかを回答するよう教示した。

3.2 入力設定

提案手法での 65MN モデルへの入力に関しては、気 温と風速は、床上 0.1m での測定値を足および下腿に、 床上 1.1m での測定値を大腿、腰、腕、手に、床上 1.7m の測定値を胸、背中、肩、頭に入力した。なお、風速は、 横流ファン停止・稼働条件に関わらず、全条件で前述し た「体熱放散等価風速」への変換を行ったうえで入力し た。湿度は床上 1.1m の測定値を全 16 部位に入力した。 放射温度は以下に示すベッドフォードの式 (6) に基づい て算出し、全 16 部位に入力した。

$$T_{\rm r} = T_{\rm g} + 2.37 \sqrt{v} \ (T_{\rm g} - T_{\rm a}) \tag{6}$$

ここで, T_r :平均放射温度 [\mathbb{C}], T_g :床上 1.1mのグロー ブ温度 [\mathbb{C}], T_a :床上 1.1mの気温 [\mathbb{C}],v:床上 1.1m の風速 [m/s] であり,風速は 60 秒間の移動平均を施 したうえで式 (6) に適用した。

被験者の代謝量は立位安静時に相当する 1.2met (met は単位体表面積あたりのエネルギー消費量の単位で 1met = 58.2W/m²) とし,着衣量は,花田らの衣服重量から推 定する式⁹⁾を利用し,実験1は0.59clo,実験2は0.45clo と設定した (clo は衣服の熱抵抗の単位で 1clo=0.155℃ $m^2/W)_{\circ}$

PMV・PPDの計算は ISO7730 のプログラムを使用した。気温と風速は床上 0.1m, 1.1m, 1.7m での測定平均値を入力として使用し,風速は更に 60 秒間の移動平均処理を施した。その他の入力項目である湿度,放射温度,着衣量,代謝量は上述した提案手法の入力値と同一とした。

図3 被験者実験の様子

4. 提案手法の適用結果

混雑率 100%未満条件と 180%条件を例に, 温熱環境 の測定結果および主観評価結果を図 4 に示す。同図の温 熱環境の測定結果には体熱放散等価風速を, 主観評価結 果には PPD, DyPPDc, DyPPDh を併せて示した。

いずれの混雑条件でも、横流ファン停止条件と比較し て、横流ファン稼働条件では気温上昇時の平均温冷感が より低くなり(涼しい側となり),発汗感率と暑さによ る不満足者率の増加が抑制されている。提案手法による 予測時系列 DyPPDhは、この横流ファン送風による暑い 不快感の抑制効果をよく捉えていることが確認できる。 また、混雑率100%未満・横流ファン稼働条件(図4 (a-2))の評価終了付近では、気温低下により寒さによ る不満足者率が上昇を開始する傾向にあるが、DyPPDc はその傾向を捉えていることが確認できる。なお、横流 ファン稼働条件でも、気温29℃,湿度80%程度の温湿 度が高い状況では、暑さによる不満足者率が70%付近 に達するが(図4(a-2)の評価開始後15分~20分付近

に相当), DyPPDh はこの横流ファン送風による暑い不 快感の抑制効果の限界も捉えていることが確認できる。

図5に気温およびSET*と平均温冷感の関係を示す。 気温と平均温冷感の関係は、横流ファン停止条件と稼働 条件とで明らかに異なるのに対し、SET*と平均温冷感 の関係は両条件で同様であった。また、SET*と平均温 冷感との相関係数(r=0.89)は、気温と平均温冷感の 相関係数(r=0.65)より有意に大きかった(p<0.01)。 提案手法で算出したSET*は、温湿度変動環境かつ横流 ファン送風環境下での温熱感覚に結び付く体感温度とし て適切であるといえる。

図 6 (a) に DyPMV と熱的不満足者率との関係を示 す。DyPMV = -1 付近を中心に凹型に分布する傾向がみ られ,式(2)~式(4) で定義される予測曲線(DyPPDc/ DyPPDh 曲線) はその傾向をよく捉えていることが確認 できる。

表4に DyPPD の平均絶対誤差を示す。横流ファン稼 働条件では, 混雑率条件が高いほど誤差が大きくなる傾 向にあるが, 平均絶対誤差は全ての条件で15pt 以内に 収まっており, 全条件を総合した平均絶対誤差は10pt 以内に収まっていた。

表4 DyPPD および PPD の平均絶対誤差⁸⁾

混雑索	DyPPD Ø)平均絶対	誤差[pt]	PPDの ³	平均絶対誤	差[pt]
条件	横流ファン 停止	横流ファン 稼働	全体	横流ファン 停止	横流ファン 稼働	全体
100%未満	9.4	4.5	7.0	34.0	22.1	28.2
120%	8.2	10.0	9.1	24.6	8.0	16.3
180%	7.3	13.2	10.2	25.4	6.0	15.7
全体	8.3	9.5	8.9	27.7	11.4	19.6

5. 提案手法の精度検証と PMV・PPD との比較

表4で確認したように、DyPPDの全条件を総合した 平均絶対誤差は8.9ptであった。これは先行研究²⁾で精 度検証した際の平均絶対誤差7.9ptと同程度であった。 精度検証に用いた被験者実験データは、提案手法の回帰 モデル構築に使用していないことから、提案手法の予測 精度の再現性が確認されたといえる。なお、提案手法の 回帰モデルは9月上旬に実施した被験者実験データに 基づいていることと²⁾、本研究で検証に用いた被験者実 験の実施時期が7月上旬および8月下旬であることを 考慮すると、提案手法は少なくとも7月~9月上旬にお いて、平均絶対誤差15pt以内で横流ファン送風環境を 含む通勤車両内の温熱快適性予測・評価が可能と考えら れる。当該期間以外の予測精度の検証・改善は今後の課 題である。

提案手法の予測誤差の主な特徴として, 混雑率が高く, かつ横流ファンが稼働している状況で相対的に誤差が大 きく,予測値が実測値よりも大きい傾向がみられた(図 4 (b-2)参照)。この主な原因として, 混雑領域に設置し た風速計の測定誤差が考えられる。混雑率120%および 180%条件では,風速計の近くに立っていた被験者が壁 となって風速センサに到達する風が減衰し,これら被験 者が受けた風よりも風速が低く測定された可能性が考え られる。混雑率100%未満条件では,横流ファン稼働条 件に対する提案手法の平均絶対誤差は5pt程度と低かっ たことからも,被験者周囲の風速を正確に捉えた入力が できれば,混雑状況においても横流ファン停止時と同等 の予測精度が確保できると推察される。高混雑時の乗客 周囲のより正確な気流分布の把握は今後の課題である。

提案手法との比較として、PPDの時系列を図4に示 す。また、図6(b)にはPMVと熱的不満足者率の関 係と共に, PMV-PPD 曲線を示した。図4, 図6(b) よ り、PPD は暑さによる熱的不満足者率を過小評価する 傾向にあり、特に気温上昇時の不快感の増大を的確に評 価できないことが確認できる。四季のある日本では、夏 季は暑熱順化により、他の季節と比較して発汗が生じや すくなることが知られている¹⁰⁾。発汗の増大は、体熱放 散を促進して体温上昇を抑える効果がある一方で、皮膚 が濡れることにより不快感を増大させる要因ともなる。 PMV・PPD はこの暑熱順化による発汗機能の変化を考 慮していないため、夏季では誤差がより大きくなると考 えられる。なお、横流ファン稼働条件において、混雑率 180%条件での予測誤差が小さい一方で、混雑率100% 未満条件での予測誤差が大きい結果となったのは、前者 に対して後者は温湿度が高く、発汗がより生じやすい温 熱環境であったことに因ると推察される。夏季の通勤車 両内では、発汗が生じる程度の気温・湿度となる状況も あるため²⁾, PPD は乗客の体感に合った温熱指標とし ての要件を満たしていないと考えられる。

6. まとめ

本研究では,夏季の通勤車両を対象に,横流ファン送 風環境に適用可能な温熱快適性評価手法を提案した。提 案手法は,非定常温熱環境下での生理状態を予測する人 体熱モデルと,夏季に通勤車両内で実施した被験者実験 に基づく統計モデルから構成され,横流ファン稼働時に みられる周期性を持つ変動風に対しては,変動風受風時 と体熱放散量が等しい一定風速に変換することにより, 一周期全体に対する平均温冷感・熱的不満足者率を予測 する。本手法を夏季に通勤車両内で実施した被験者実験 に適用した結果、人同士が接触しない程度の混雑環境ま でに関して、横流ファン停止時・稼働時共に、平均絶対 誤差 10pt 程度で熱的不満足者率を予測可能であること を確認した。

本手法により,夏季における通勤車両内の温熱環境を 対象に,横流ファン送風による暑さ感の緩和効果や快適 性の改善/悪化効果を定量的に予測・評価することが可 能となり,快適性の観点からの送風調節の検討等に活用 できると期待される。

文 献

- 白石和彦, 酒井修:車内環境向上を目指した空調システム, 三菱電機技報, Vol.81, No.10, pp.681-684, 2007
- 2)遠藤広晴,伊積康彦,林伸明:夏季の通勤列車内の温熱快 適性予測手法,鉄道総研報告, Vol.29, No.7, pp.27-32, 2015
- 3) 遠藤広晴, 榎並祥太, 吉江幸子, 伊積康彦, 林伸明:通勤 車両内の横流ファン送風が乗客の温熱快適性に及ぼす影響, 第23回鉄道技術・政策連合シンポジウム (J-RAIL2016) 講演論文集, S5-1-1, 2016
- 4) Endoh, H., Enami, S., Izumi, Y., Noguchi, J., "Experimental study on the effects of air flow from cross-flow fans on thermal comfort in railway vehicles," Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), Vol.VI: Transport Ergonomics and Human Factors (TEHF), Aerospace Human Factors and Ergonomics, Advances in Intelligent Systems and Computing, Vol.823, Springer, pp.379-388, 2019.
- 5) ISO7730, "Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria," International Standard Organization, 2005.
- 6)深井一夫,後藤滋,斎藤純司,伊藤宏,阿久井哲:標準新 有効温度(SET*)と日本人の温熱感覚に関する実験的研 究第2報一冬季および夏季における温熱感覚の比較,空 気調和・衛生工学論文集,No.51, pp.139-147, 1993
- 7)田辺新一,中野淳太,小林弘造:温熱環境評価のための 65分割体温調整モデルに関する研究,日本建築学会計画 系論文集, No.541, pp.9-16, 2001
- 3)遠藤広晴,榎並祥太,菊地史倫,吉江幸子,伊積康彦,野
 口純:通勤車両内の横流ファン送風が乗客の温熱快適性に 及ぼす影響の定量的評価,日本機械学会論文集,vol.88, No.916,DOI:10.1299/transjsme.22-00171,2022
- 9) 花田嘉代子,三平和雄,佐藤由美:男子用下着類の熱抵抗の計測に関する研究,繊維製品消費科学,Vol.24,No.8, pp.363-369,1983

10) Nakamura, Y. and Okamura, K. "Seasonal variation of sweating responses under identical heat stress," Applied

Human Science, Vol.17, No.5, pp.167-172, 1998.

トンネル漏水箇所におけるレール折損の原因推定と 管理手法の提案

相澤 宏行* 細田 充* 山本 隆一** 田中 博文*** 森 健矢***

Monitoring Method to Prevent Rail Defects due to Water Drips in Tunnel from Occurring

Hiroyuki AIZAWA Mitsuru HOSODA Ryuichi YAMAMOTO Hirofumi TANAKA Kenya MORI

There have been cases where rail defects due to water dripping in tunnels occur. This paper proposes a monitoring method to prevent this kind of rail defects from occurring. Firstly the authors investigate the cause of broken rails in tunnels, and it is revealed that rail-head irregularities and hanging sleepers cause significant bending stresses at rail foot. Field tests and numerical simulations were used to derive relationship between railfoot stresses, rail-head irregularities and hanging sleepers. Finally, we developed a method for evaluating soundness of rails based on rail-foot stresses using data acquired by track inspection cars.

キーワード:レール損傷、レール頭頂面凹凸、浮きまくらぎ、レール応力、軌道検測車

1. はじめに

トンネル内の湿潤環境下のレールは、腐食による疲労 強度低下に伴い、列車荷重を繰り返し受けることで、レー ル底部をき裂の起点として折損する可能性がある。その ため、レール探傷車によって取得されるレール底部の腐 食量に着目した管理が行われている¹⁾。一方、レールの 腐食が軽微であるにも関わらずレール底部を起点として レールが折損することがあり、折損箇所ではトンネル天 井からの漏水および著大なレール頭頂面凹凸と浮きまく らぎが確認されている²⁾。

そこで本研究では、レール折損発生箇所の調査を行い、 レール折損発生に関する力学的なメカニズムを調査し た。また、現地試験および車両走行シミュレーションに よって、レール底部に発生する応力(以下、レール応力 とする)を評価した。さらに、その結果をもとに、レー ルの健全度³⁾に基づいたトンネル内のレール折損を防 止するための管理手法を提案する。

2. レール折損事例の調査による折損原因の推定

レールの腐食が軽微であるにも関わらずトンネル内で レール折損に至ったある一例について、レールの外観観 察および,折損箇所の軌道変位データの分析を行った。 なお,調査箇所はバラスト軌道である。得られた知見は 以下の通りである。

- (1) 折損箇所においてはトンネル天井からの漏水が確認され、漏水がレール頭部に滴下されている箇所もあった。折損したレールの破断面には、腐食による断面欠損およびレール底部の顕著な減肉は確認されず、レール底部から発生した疲労き裂が観察された(図1(a))。
- (2) レール頭頂面の1mスパンの凹凸(以下,頭頂面凹凸とする,また頭頂面凹凸深さを単に凹凸量とする)を測定したところ,折損箇所の直近で頭頂面が局所的に摩耗し,最大で4mm程度の大きな頭頂面凹凸が確認された(図1(b))。
- (3) 軌道検測車で得られた軌道変位データをもとに推 測された浮きまくらぎ(まくらぎとバラストの間 に空隙が生じること、以下、空隙の大きさを浮き 量とする)の量は、折損箇所近傍においては 12mmであった。(図1(c))

上記の3点を踏まえれば、レールの腐食が軽微である ことからレールの疲労強度は大きく低下していないもの の、顕著な頭頂面凹凸および浮きまくらぎに起因して車 両通過時に著大なレール応力が発生し、レール底部から き裂が進展して折損に至ったと考えられる。よって、次 章以降、頭頂面凹凸および浮きまくらぎが発生している 箇所のレール応力について検討することとする。

論

^{*} 軌道技術研究部 レールメンテナンス研究室

^{**} 軌道技術研究部 レールメンテナンス研究室(現 鉄道国際規格センター)

^{***} 軌道技術研究部 軌道管理研究室

- 図1 折損レールと折損箇所の状況
- 3. 頭頂面凹凸・浮きまくらぎ発生箇所のレー ル応力
- 3.1 現地応力測定

3.1.1 現地応力測定の概要

頭頂面凹凸と浮きまくらぎがレール応力に与える影響 を検討するために、営業線においてレール応力の測定試 験を行った。測定箇所は、軌道検測車による軸箱加速度 および軌道変位データを分析することによって顕著な頭 頂面凹凸および浮きまくらぎが発生していると推察され る箇所を選定した。測定条件は、①頭頂面凹凸および浮 きまくらぎが存在する状態と②レール交換および道床つ き固めによる補修後の状態それぞれにおいて実施した。 なお、補修後においても約4mmの浮き量が残っていた。

図2に、測定箇所の概要と、応力測定区間において実 測された凹凸量および浮き量の分布を示す。凹凸量は レール凹凸連続測定装置⁴⁾で、まくらぎの浮き量は締 結装置を緩解した状態でレール底部と軌道パッド上面の 隙間を測定して得た値である。また、レール応力はまく らぎ間中央のレール底部側面に設置したひずみゲージ

図2 現地応力測定の位置と頭頂面凹凸および浮きまく らぎの状況

	レール	50kgN
	まくらぎ	PC6 号
計 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	まくらぎ間隔(mm)	670
則加旦	軌道パッドばね(MN/m)	110
	曲線半径(m)	300
	カント(mm)	80
	走行速度(km/h)	52~72
車両	測定輪重(kN)	42~70
	静止輪重(kN)	39, 52, 57

表1 現地応力測定箇所の軌道および車両条件

で、輪重はまくらぎ間中央のレール腹部に貼り付けた輪 重ゲージで測定した。なお、レール応力はレール底部の 軌間外側と内側の両方で測定し、これらの平均値を用い て評価することとする。6点の測点の内、測点1~5は 浮きまくらぎが連続的に発生している箇所、測点6は、 測点5から地点B方へ約8m離れた頭頂面凹凸も浮き まくらぎも無い箇所であり、健全箇所と位置づけた。図 2より浮き量の最大値は測点4をはさむ両まくらぎにお いて12mmで、測点4を中心に浮きまくらぎが連続的 に分布していることが分かる。頭頂面凹凸については、 測定区間で全振幅の最大値が約2mmとなっており、浮 き量と同様に測点4直上の凹凸量が最大となっている。 なお、補修後は測点1、2に浮きまくらぎが認められな かったことから、測点3~6のみ測定した。

測定区間には複数の種類の車両が走行しており,走行 速度および輪重には幅がある。表1に測定箇所の軌道条 件および走行車両の条件を示す。

3.1.2 現地応力測定の結果

図3(a)に、ある車両の1台車が走行した際における、 測点4(凹凸量および浮き量最大箇所)および測点6 (凹凸量および浮き量0)において測定されたレール応 力波形の一例を示す。図3(a)について、波形の1つ 目のピークは台車の前軸、2つ目のピークは後軸通過時 に対応している。測点4では測点6と比較して100MPa 程度大きいレール応力が発生していることが分かる。

車両通過時のレール応力のピークを,測点ごとに補修 前後で比較すると図3(b)のようになる。補修前のレー ル応力のピーク値は測点4が最大で,測点4から遠ざ かるにつれ減少する傾向にある。また,補修後のレール 応力は補修前と比較して顕著に低減されていることが確 認された。

図4に補修前後の2両編成の列車10編成分の走行 データに関する測点4および測点6で測定された輪重 とレール応力を示す。補修前後で輪重,レール応力の双 方が減少する傾向にあることから,走行車両や速度が異 なる場合でも,頭頂面凹凸および浮きまくらぎの影響に

図4 測定された輪重およびレール応力

よって輪重変動が大きくなり、その結果、レール応力が 増大すると考えられる。

3.2 車両走行シミュレーションおよび凹凸量・浮き量 とレール応力の関係

現地応力測定により、凹凸量および浮き量が大きい場 合にはレール応力も大きくなることが確認された。そこ で、凹凸量および浮き量をパラメータとして車両の走行 を模擬したレール応力シミュレーションを行い、凹凸量、 浮き量とレール応力の関係を調査した。

シミュレーションには軌道動的応答モデル⁵⁾を使用 した。図5にモデルの概要を示す。本モデルの軌道は, 梁であるレールを質点およびばねで表された軌道パッ ド,まくらぎ,まくらぎ支持ばねが離散支持する構造, 車両は質量と剛体回転を考慮したばね下質量および台車 枠が軸ばねで結合された構造で,車両はレールの上を レール/車輪接触ばねを介して移動する。頭頂面凹凸は レール/車輪間の強制変位で,浮きまくらぎはまくらぎ

図5 車両走行シミュレーションモデル

下ばねをバイリニアの特性とすることで表現する。この モデルは、現地応力測定箇所の頭頂面凹凸および浮きま くらぎを入力した再現解析により、レール応力算出結果 の精度が確認されている⁶⁾。

頭頂面凹凸は波長 0.5m の正弦波とし、その振幅を 1 ~5mm に設定した。浮きまくらぎは浮いているまくら ぎの連続数(以下,浮き連続数とする)を1~15本, 最大浮き量を1~15mm として軌道長手方向に対して正 弦波状に設定した。レール応力が最大となる条件は浮き 量が最大の箇所で輪重が最大となる場合であると予想さ れ、頭頂面凹凸のみを入力した試解析によって輪重の最 大値は凹凸量最大箇所の近傍で発生することを確認した ため、浮き量が最大の箇所と凹凸量が最大の箇所は一致 するように設定した。その他の軌道および車両のパラ メータは表 2 の通りであり、車両は在来線を走行する一 般的な特急車両相当である。解析の時間ステップは1× 10⁵(s) とする。

各凹凸量および浮きまくらぎ条件についてシミュレー ションを行い、凹凸量および浮き量が最大の箇所におけ るレール(梁)の曲げ応力を算出した。凹凸量および浮 き量のレール応力との関係を図6に示す。なお、浮き量 が同じでも浮き連続数によって発生する応力は異なるた め、ここでは応力が最大となる浮き連続数の場合のみを プロットしてある。現地応力測定と同様に、凹凸量と浮 き量が大きいほど、レール応力が増大する傾向にあるこ とが分かる。また一例として、レール応力 σ_m を、凹凸 量 z、浮き量 dについて重回帰分析した結果を合わせて 図6中に示す。回帰式からも、頭頂面凹凸と浮きまくら ぎの両者がレール応力の増大に影響することとなり、両 者が重畳した場合に大きなレール応力が発生すると言え る。なお、図6より浮き量 10mm 以上では応力の増加

	レール	50kgN
	まくらぎ	PC6 号
	まくらぎ間隔(mm)	661
軌道	軌道パッドばね(MN/m)	110
	まくらぎ下ばね(MN/m)	40
	軌道パッドばね減衰(kNs/m)	98.0
	まくらぎ下ばね減衰(kNs/m)	98.0
	走行速度(km/h)	71
	静止輪重(kN)	58.4
	ばね下質量(kg)	694
車両	軸ばね(kN/m)	850
	軸ばね減衰(kNs/m)	19.6
	台車枠質量(kg)	1183
	台車枠ピッチング慣性半径(m)	0.726

図6 頭頂面凹凸量・浮き量・レール応力の関係

の程度が小さくなっているが、レール応力の重回帰分析 は凹凸量と浮き量の線形式によって回帰を行っているた め、回帰式は浮き量が10mmよりも小さい場合には浮 きまくらぎの影響をやや小さく、10mm以上の場合はや や大きく評価している場合がある。

4. トンネル内の新しいレール管理手法の提案

4.1 健全度の導入

トンネル漏水箇所においては, 頭頂面凹凸および浮き まくらぎによる著大なレール応力の発生と, 腐食による レールの疲労強度の低下⁷⁾の可能性があり, 両者がレー ル折損の原因になると考えられる。すなわち, レール底 部からの折損を防止するためには, レールの発生応力と レールの腐食状態の双方を適切に状態監視する必要があ る。そこで, レール応力と疲労限度を考慮したレールの 「健全度」を以下のように定義することとする。

$$f_{\rm h} = 1 - \frac{\sigma_{\rm m}}{\sigma_{\rm c}} \tag{1}$$

ここで、 f_h は健全度、 σ_m はレール応力、 σ_c は疲労限 度(レールにき裂が発生し、折損が発生するレール応力 の限度値。明かり区間の経年レールの場合 220MPa)で ある。 σ_m は漏水に伴う頭頂面凹凸や浮きまくらぎによ るレール応力の増大を、 σ_c は腐食によるレールの疲労強 度低下を反映する。したがって、健全度 f_h を使用する ことにより、従来のレール底部腐食量の管理に加えて、 腐食が軽微な場合も含めて、折損防止の観点からレール を管理するための優先順位を決定することができるよう になる。

近年,軌道検測車による軸箱加速度や軌道変位データ を軌道保守管理データベースシステム「LABOCS」⁸⁾ に よって分析することで,一定の精度で凹凸量および浮き 量を分析することができるようになっている⁹⁾¹⁰⁾¹¹⁾。 凹凸量と浮き量が求められれば 3.2 節の車両走行シミュ レーションで得られた関係によってレール応力 σ_m が求 められる。また,疲労限度 σ_c はレール探傷車から得ら

図7 レール健全度の算出フロー

れるレール底部腐食量データから求められる。 $\sigma_m \ge \sigma_c$ が求まれば、式(1)により対象区間のレールの健全度 f_h をキロ程ごとに算出することができる。すなわち、軌道 検測車およびレール探傷車のデータから、現場調査を実 施することなく、健全度に基づいてレールを保守する箇 所のスクリーニングまたは優先順位付けを行うことがで きる。レール健全度の算出フローを図7に示す。

ー般的に疲労限度の8割程度の応力が発生した場合 に、金属材料にはき裂が発生するとされている¹²⁾。よっ て、健全度f_hが0.2を下回らないよう頭頂面凹凸および 浮きまくらぎを解消する保守作業を行うことで、レール 折損のリスクを低減することが可能になる。

4.2 営業線データへの適用例

実際の軌道検測車およびレール探傷車によって得られ たデータをもとに,図7のフローに沿って健全度を算出 した結果の一例を図8に示す。

図8の作成および活用の方法は以下の通りである。

- (1) 軌道検測車による軸箱加速度および軌道変位デー タから凹凸量と浮き量を推定する。凹凸量あるい は浮き量のしきい値を予め定めておき,評価対象 箇所を限定する。例としてしきい値を浮き量 6mm とする場合,評価対象箇所は図8中1段目の赤い 四角の箇所のみである。浮き量がしきい値を超過 したことから,この箇所における凹凸量も推定す る。また,探傷車データから当該箇所のレール底 部腐食量を取得し,健全度計算のためのσ。を求め る。本区間については,腐食状態に応じた S-N 曲 線の 200 万回疲労強度⁷⁾を設定することとした。
- (2) 推定された凹凸量と浮き量から健全度計算のための σ_m を求め、σ_m と σ_c から健全度 f_h を算出する。 健全度がしきい値(例えば 0.2)を下回る場合、 当該箇所の現地で、詳細に頭頂面凹凸や浮きまく らぎの状況を把握する。
- (3) 現地での調査結果に基づき, 道床つき固めやレー

図8 営業線データに対する健全度算出フローの適用例

ル交換等、処置を決定する。

5. まとめ

本研究では、漏水を伴うトンネル内においてレールの 折損を防止するためのレール管理手法について検討し た。その内容は下記の通りである。

- (1)過去に発生したトンネル内でのレール折損事例を 分析した。その結果,折損箇所においては、トン ネル天井からの漏水、レールの頭頂面の局所的な 摩耗に伴う凹凸,顕著な浮きまくらぎが確認され た。さらに、レール底部の腐食状態は軽微である にも関わらず、レール底部からき裂が進展し、レー ル折損が発生している例があった。
- (2)営業線において、頭頂面凹凸が約2mm、浮きまくらぎが12mm発生している箇所のレール応力を測定した。その結果、頭頂面凹凸や浮きまくらぎが存在しない箇所と比較してレール応力が顕著に大きく、疲労限度レベルの応力が発生していることが分かった。
- (3) 頭頂面凹凸および浮きまくらぎ発生箇所の車両走 行を模擬したシミュレーションを実施し、凹凸量 と浮き量がレール応力の増加に与える影響を定量 的に評価した。
- (4)頭頂面凹凸および浮きまくらぎによって定まるレー ル応力と、レール底部腐食量に基づくレールの疲 労限度を組み合わせた指標であるレールの健全度 を導入し、健全度に基づいたレールの管理手法を 提案した。

文 献

- 新版軌道材料編集委員会編:新版軌道材料, pp.41-42, 2011
- 太山敦,橋本克樹:トンネル内レール折損事象と腐食レールの管理強化,日本鉄道施設協会誌,Vol.59, No.5, pp.345-348,2021
- 3)細田充,相澤宏行,山本隆一:トンネル漏水箇所における レール折損の原因調査と管理手法の提案,新線路, Vol.76, No.909, pp.21-23, 2022
- 田中博文,清水惇:波状摩耗管理のための可搬型レール凹 凸連続測定装置の実用化,鉄道総研報告, Vol.29, No.8, pp.35-40, 2019
- 5)石田誠,三浦重,河野昭子:軌道動的応答モデルとその解 析結果,鉄道総研報告, Vol.11, No.2, pp. 19-26, 1997
- 6)相澤宏行、細田充、山本隆一:連続的にレール頭頂面凹凸 および浮きまくらぎが発生している箇所のレール応力解析 モデル、第77回土木学会年次学術講演会、I-148,2022
- 7)細田充,片岡宏夫,高須豊,弟子丸将:腐食・電食環境下 におけるレールの余寿命評価,鉄道総研報告, Vol.27, No.4, pp.5-11, 2013
- 8) (公財)鉄道総合技術研究所 軌道保守管理データベースシステム「LABOCS(ラボックス)」: https://www.rtri.or.jp/rd/division/rd45/rd4530/rd45300102.html(参照日:2023年2月14日)
- 9)田中博文,松本麻美,原田祐樹,桶谷栄一:軌道検測車で 測定される軸箱加速度を活用したレール波状摩耗の状態評 価と管理手法に関する研究,構造工学論文集,Vol.63A, pp.541-549,2017
- 10) 楠田将之,松本麻美,片岡宏夫:軌道変位データに基づく 浮きまくらぎ検出手法,土木学会論文集 A2(応用力学), Vol. 74, No. 2(応用力学論文集 Vol. 21), pp.I_543-I_551, 2018
- 11) 楠田将之,田中博文,片岡宏夫:浮きまくらぎ検出に対す る各種軌道諸元の影響確認と実務適用に向けた計算手法の 構築,構造工学論文集,Vol.65A, pp.52-62, 2019
- 12)村上敬宣:金属疲労微小欠陥と介在物の影響,養賢堂, 2004

文

論

踏切監視カメラの画像を用いた遮断かん折損検知手法

影山 椋* 長峯 望*

Crossing Rod Breakage Detection Method Using Surveillance Camera Images

Ryo KAGEYAMA Nozomi NAGAMINE

For early and automatic detection of crossing rod breakage caused by vehicles forcibly entering in level crossing, we developed a method for detecting crossing rod breakage using surveillance camera images. The proposed method determines the presence or absence of stripes peculiar to level crossing by extracting the color components from images and identifying the spatial frequency of the waveforms converted from the extracted color components. This paper describes the details of the proposed method and the results of performance evaluation tests.

キーワード:踏切遮断かん折損,監視カメラ,画像処理,Hilbert-Huang変換

1. はじめに

国内における踏切の約90%を占める¹⁾第一種踏切で は、列車の接近・通過時に遮断かんが降下して道路通行 者の進入防止を図っている。しかし自動車などの無理な 進出入に起因して、遮断かんが折損することがある。こ の際、遮断かんの交換作業が行われる。また、これが完 了するまでの間、列車の徐行や監視要員の配置などの措 置がとられることもある。そのため、遮断かんの折損を できるだけ早期に検知できることが望ましい。

このような背景を踏まえ、これまでにも遮断かんの折 損を自動的かつ早期に検知する手法の開発が行われた事 例がある。例えば、遮断かんの根本に取り付けたセンサ から発した超音波の反射の有無や²⁾,遮断機に取り付け たセンサで計測した動作電流値の正常状態からの変化³⁾ で検知を行う手法が提案されている。これらの方法では いずれも遮断機あるいは遮断かん1本に少なくとも1 個のセンサを取りつける必要があるため、設置および取 替・保守にコストを要する。そこで我々は、近年複数の 鉄道事業者において設置が進んでいる踏切監視カメラを 活用し、遮断かんの折損を検知する手法を開発してい る⁴⁾。提案手法は、図1に示すように、既設の踏切監視 カメラの画像を、外部のクラウドやデータサーバー等を 通じて、指令所に転送したものに対して適用することを 想定しており、追加施工を行わずに実現できる。本稿で は、提案手法の概要と、性能評価試験の結果について報 告する。

図1 踏切監視カメラの画像を用いた遮断かん折損検知 のためのシステム構成イメージ

^{*} 情報通信技術研究部 画像解析研究室

図2 監視カメラの画像を用いた遮断かん折損検知アルゴリズム

個像処理と Hilbert-Huang 変換による踏 切遮断かん折損検知手法

2.1 手法の概要

提案手法における折損検知処理の流れを図2に示す。 最初に,踏切監視カメラの画像全体から,遮断かん周辺 の検知エリアを指定して切り出し,真上から俯瞰した画 像に変換する。この画像から,遮断かんの縞模様に特有 の色成分を抽出し,さらに画像における色成分の強さを 1次元波形に変換する。最後に変換した1次元波形に対 して空間周波数解析を施し,その結果から折損を判定す る。各手法の詳細は次項で述べる。

2.1.1 検知エリアの設定

踏切監視カメラは,踏切道内の状態を監視する目的で 設置されるため,一般的には踏切道全体を見渡す画角で 設置されている。この監視カメラの画像全体から遮断か んの異常のみをピンポイントで検知することを目的とし て,提案手法では,画像中における遮断かんの周りの座 標4点を事前に検知エリアとして指定し,検知エリア内 の画像のみを以降の処理の対象とする。4点がなす領域 は監視カメラ画像中の遮断かんの形状に沿って,カメラ 手前から奥に向けて細くなるため,遮断かんの太さが可 能な限り均等になるよう,真上からの視点の画像に変換

図3 色の二値画像を波形に変換する処理のイメージ

(射影変換)を行う。

2.1.2 色成分の抽出と1次元波形への変換

提案手法では、遮断かんが黄色と黒色で交互に塗装さ れていることに着目し、射影変換後の遮断かん画像から 黄色あるいは黒色成分を抽出する。黄色成分、黒色成分 のどちらを抽出対象とするかは、遮断かん画像の背景色 等に応じて選択するものとする。色成分の抽出にあたり各 画素における色を RGB 色空間から HSV 色空間に変換す る。HSV 色空間では、色を色相 H (Hue)、彩度 S (Saturation)、明度 V (Value) の3つの尺度で表現する。H は 色合いを 0°~360°の角度で定義したもので、S は鮮やかさ、 V は明るさを 0~255 の値で定義したものである。RGB 色空間と比較して人間の直観に近い表現であり、また照 明条件の変化に拠らず同じ色合いは特定の H の領域に分

図4 正常状態,折損状態における検知エリア画像・色成分波形・Hilbert スペクトラムの比較

布するため、特定色成分の抽出に適した表現方法である。 このH,S,Vに対して、黄色または黒色と判断するため の範囲を定め、その範囲に収まる画素値を255、それ以外 を0とする二値化処理を施す。次に図3のように、色成 分の二値画像を波形に変換する。二値画像では、遮断か んの黄色または黒色で塗装された箇所で周期的に画素値 255の領域が表れる(図3上)。この周期性を遮断かんの 折損判定に利用するため、検知エリア画像の、遮断かん の長手方向の画像座標軸を、軸と垂直な方向の画像座標 軸を軸方向の画素値の平均を算出し波形(色成分波形) に変換する(図3下)。

2.1.3 Hilbert-Huang 変換による縞模様の特定

遮断かんが正常ならば、色成分波形は周期的にピークを 持つ。したがって色成分波形に対して空間周波数を求め、 特定の周波数帯に強い成分が表れるか否かを折損検知の 基準とする。周波数解析の方法として、工学分野で多くの 適用事例のある Hilbert-Huang 変換(Hilbert-Huang Transform: HHT)⁵⁾を適用した。HHT は Fourier 変換などと比 べて振幅や周波数が時間や空間で変化する非定常性の高い 波形に対する周波数解析に適した手法である。HHT では 最初に経験的モード分解(Empirical Mode Decomposition : EMD)と呼ばれるアルゴリズムにより、元の波形を複数 個の固有モード関数 (Intrinsic Mode Function : IMF) に分 解する。遮断かんの長手方向の画像座標軸をu軸, i番目 の IMF を $x_i(u)$ (i=1,2,...,N), 残差を r とすると, 色成分波 形 w(u)は式(1)のように IMF と残差の和で表される。IMF はEMD アルゴリズムによって残差rが単調増加(単調減 少) する波形になるまで繰り返し算出されるが、IMF の数 Nは、この繰り返しの回数に相当する。

$$w(u) = \sum_{i=1}^{N} x_i(u) + r$$
 (1)

式 (1) の右辺の $x_i(u)$ は以下のように振幅 A_i ・位相 θ_i が u によって変化する単一の三角関数で表される。

$$x_i(u) = A_i(u) \cos(\theta_i(u)) \tag{2}$$

式 (2) に Hilbert 変換を施し、以下のように空間周波 数 *f*(*u*)を求める。

$$f(u) = \frac{1}{2\pi} \frac{d\theta(u)}{du}$$
(3)

式(3)がHHTの出力であり、縦軸を空間周波数、横 軸をとする周波数分布(Hilbert スペクトラム)が得ら れる。正常な遮断かんおよび折損状態における遮断かん の画像からの色成分波形に対して求めた Hilbert スペク トラムを図4に示す。遮断かんの全ての部位が検知エリ アの画像に正しく存在する場合、空間全体に色成分波形 のピークが周期的に現れ。Hilbert スペクトラムの特定 の空間周波数帯(以下,正常周波数帯,図中赤色領域) において一定以上の強さの空間周波数成分(図中紫色プ ロット)が連続して確認できる。一方、折損時は折損部 位を境に色成分波形が消失しているが、それに対応して Hilbert スペクトラムの正常周波数帯内で強い空間周波 数成分が見られなくなっていることが分かる。このこと を利用して最終的な折損判定を行う。具体的には、一定 の強さ以上の空間周波数成分が, Hilbert スペクトラム の正常周波数帯内で連続して途切れている長さを求め, その値が、閾値(画像中の、隣接する縞模様間の長さ) を上回った場合に折損と判定する。

3. 提案手法の性能評価試験

提案手法の性能評価試験を鉄道総研所内および,鉄道 事業者が保有する訓練施設にて実施した。本章では各試 験の概要および結果について示す。

3.1 鉄道総研所内における性能評価試験

3.1.1 試験概要

鉄道総研所内に,試験用の模擬的な踏切環境(以下, 模擬踏切)を構築し,評価試験を実施した。模擬踏切の 構成を図5に示す。模擬踏切は2組の踏切遮断機. 監視 カメラ、踏切照明灯および器具箱による構成とした。 遮 断機の上昇下降は、器具箱内の制御器によって自動的か つ連続的に実施することができる。また、遮断機設置エ リアには、遮断機を地面に固定するためのボルト穴を一 定の間隔で空けることにより、遮断機の位置を自由に変 更することが可能となっている。監視カメラおよび踏切 照明灯は、踏切遮断機の脇に建植したポールで、地面か ら高さ約3mの位置に設置した。監視カメラの外観を図 6. 主な仕様を表1に示す。監視カメラは首都圏や関西 圏の鉄道事業者で導入されているクラウド型映像監視 サービス「スマートユニサイト」⁶⁾で使用されているもの を用いた。踏切照明灯は、複数の鉄道事業者で採用され ている照度基準(見通し距離 400m かつ交通量 500 台/h 以上の踏切で 30lx 以上)を満たすものを用いた。また遮 断かんは、図7に示すように、長さ1.5mの部品5つ(先 端から順に C1, C2, C3, C4, C5) からなるものを用いた。

模擬踏切では、提案手法の基本性能を確認するために、 対象とする折損状態を1つに限定し、評価試験を実施し た。10:30~19:00 にかけて、約1時間ごとに正常状態と、 中間部分(C1~C3)まで欠損した状態を交互に再現し ながら、連続的に撮影を行った。遮断かんは基本的に降 下しているときに折損すると考えられるため、遮断かん は撮影中、常に降下した状態とした。なお、日没の約 30分前に相当する16:17 に踏切照明灯を点灯した。

3.1.2 試験結果

監視カメラからの映像から10秒おきに1フレーム分 の画像を取得し、提案手法による検知処理を施した。全 フレーム分の処理結果を集計し、事前にフレームごとに 付与した実際の遮断かんの状態に関する情報(正解)と 照合することによって、検知性能の評価を行った。折損 状態の全ての画像に対して、正解値と同様正しく折損状 態を検知できたフレーム数の割合を検知率と定義した。 昼間(11時台)および日没後(18時台)の折損検知結 果の例を図8に示す。図に示す通り、時間が変わって画 像中の背景の色合いが変化しても、折損に伴う検知エリ ア内での縞模様の消失を正しく捉えられていることが確 認できた。また時間帯ごと(10時台~12時台, 13時台 ~15時台, 16時台~18時台)および試験実施時間全体 の検知率を表2に示す。いずれの時間帯も検知率は 100%であり、本試験の環境下では、中間部分まで欠損 した状態に対して時間帯に拠らず、確実に検知できるこ とが分かった。

3.2 鉄道事業者の訓練施設における性能評価試験

3.2.1 試験概要

前節で述べた試験と比較して,より実際の踏切に近い 環境での提案手法の有効性について検証するため,鉄道

図6 監視カメラの外観

表1 監視カメラの主な仕様

解像度	水平 1,280px 垂直 720px
画角	水平 131° 垂直 70°
フレームレート	5 fps

図7 撮影対象の遮断かん

(a) 昼間(11時台)

(b) 日没後(18 時台)

図8 昼間および日没後の監視カメラ画像と折損検知結果

時間	検知率[%]
10:30~12:59	100
13:00~15:59	100
16:00~18:59	100

事業者が保有する訓練施設内にある3箇所の踏切で性 能評価を実施した。試験条件(天候,撮影時間)を表3 に示す。試験は,天候にバリエーションを持たせるため 各踏切で2日間(1日あたり5~6時間)にわたり実施 した。なお,撮影には異なる位置に異なる向きで設置し た2台のカメラを用いた。

試験時には、図9に示すように電化柱を模擬したアル ミフレームを踏切の近傍に仮設し、高さ約3mの位置に、 3.1節の試験で用いたものと同じカメラを取りつけた。 折損状態については、以下の状態を約5分おきに繰り返 し再現し、撮影を実施した。

① C1 欠損:先端1パーツが欠損した状態
 ② C2 欠損:先端から2パーツが欠損した状態
 ③ C3 欠損:先端から3パーツが欠損した状態
 ④全欠損:全てのパーツが無い状態

⑤屈折 15°: 先端 1パーツが 15°折れ曲がった状態
⑥屈折 30°: 先端 1パーツが 30°折れ曲がった状態
⑦屈折 45°: 先端 1パーツが 45°折れ曲がった状態
⑧屈折 60°: 先端 1パーツが 60°折れ曲がった状態
なお,屈折状態については図 10 に示す折損模擬アダプ タを C1 と C2 の間に挿入することで再現した。

3.2.2 試験結果

試験時における検知結果の例を図11に示す。訓練施 設内の踏切環境において,実際の状況に近い屈折した折 損状態に対しても,図8と同様にHilbertスペクトラム 上で縞模様の消失が確認された。抽出する色成分の閾値 や正常周波数帯の幅などいくつかのパラメータは踏切環 境が変わるごとに調整の上処理を施してはいるが,提案 手法が周辺環境や天候が変わっても適用可能であること を示す結果となった。

また,踏切3箇所で撮影された全ての折損状態の画像

		天候	撮影時間
踏切1	1日目	晴	14:00-18:15
	2日目	晴	11:00-15:30
踏切2	1日目	লা	12:00-17:50
	2日目	晴	10:40-16:10
踏切3	1日目	曇	11:30-17:00
	2 日 目	晴	10:30-15:30

表3 試験時の条件

図9 撮影時の様子

図 10 折損模擬アダプタ

(a)踏切1

(c)踏切3

図 11 訓練施設内の踏切遮断かんに対する検知結果の例

表4	折損状態ごと	この検知率(欠損)	
状	態	検知率[%]	

小忠	(東和平[%]
C1 欠損	97.2
C2 欠損	98.4
C3 欠損	100
全欠損	98.0

表5 折損状態ごとの検知率(屈折)

状態	検知率[%]
屈折 15°	90.3
屈折 30°	97.3
屈折 45°	97.5
屈折 60°	97.2

について, 折損状態ごとに検知率を算出した結果を表4, 表5に示す。表より,全ての折損状態で検知率が90% 以上となることが分かった。

4. まとめ

踏切遮断かん折損の早期かつ自動的な検知手法とし て,既設の踏切監視カメラで取得された画像から遮断か んの縞模様の有無を特定することで折損を判定する手法 を開発した。鉄道総研所内の試験環境における基礎的な 性能評価の結果,中間部分での折損は時間帯に拠らず正 しく検知できることが分かった。また鉄道事業者の訓練 施設内の踏切における性能評価の結果,踏切の場所や季 節,天候などが変わった場合でも折損状態を90%以上の 検知率で正しく検知できることが分かった。今後は提案 手法の実用化に向けて,検知に最適なカメラの画角・設 置位置の検討など,さらなる検知精度の向上に取り組む。

謝 辞

本研究における撮影試験の実施にあたり,東日本旅客 鉄道株式会社 JR 東日本研究開発センター 先端鉄道 システム開発センターには多大なご協力をいただいた。 この場を借りて厚くお礼申し上げる。

文 献

- 1)国土交通省鉄道局 鉄軌道輸送の安全に関わる情報(令和3 年度):https://www.mlit.go.jp/common/001519465.pdf(参照 日:2022年12月9日)
- 2) 杉本純至,市倉庸宏:踏切遮断かん折損障害に関する研究 開発,JR EAST Technical Review, No.17, pp.49-53, 2007
- 3)尾崎尚也:踏切遮断機の動作電流による遮断桿折損の検知
 手法について,鉄道と電気技術, Vol.20, No.12, pp.36-39, 2007
- 4)影山椋,長峯望,高﨑建,長坂雄一,根橋壮:画像解析によるしゃ断かん折損検知手法の開発,鉄道と電気技術, Vol.33, No.10, pp.1-5, 2022
- 5) N. Eh. Huang : "Hilbert-Huang transform and its applications", World Scientific, Vol.16, 2014.
- 6)山田喜裕:クラウド型映像監視サービス「スマートユニサ イト」, Unisys Technology review Extra Edition, No.135, pp.19, 2018

Γ

文

論

オイルレスインピーダンスボンドの 構造設計に対する評価法 潮見 俊輔* 進藤 卓朗* 神谷 剛志* 佐藤 輝空** 往古 直之**

Evaluation Method of Structural Design of Impedance Bonds Molded by Resin

Shunsuke SHIOMI Takuro SHINDO Tsuyoshi KAMIYA Terutaka SATO Naoyuki OKO

Thermal effects on signalling field devices, such as high air temperature, intense sunlight, and Joule heat by return currents, can be tested independently. However, it has been difficult to evaluate the effects by multiple sources of heat. Therefore, failures of signalling field devices occasionally have occurred relating heat, such as a deformation of a structure by heat. To reduce such failures, we developed a method for evaluating thermal effects for impedance bonds using a computer simulation of heat-stress analysis. We also proposed a method for evaluating thermal effects for impedance bonds by combination of analytical and experimental methods. $+- \nabla - \vec{k} : 4 \sim \ell - \vec{y} \sim \lambda \vec{x} \sim \vec{k}$, 熱応力解析, 帰線電流, 温度上昇, 性能試験方法

1. はじめに

鉄道沿線に設置される信号機器は、日射や風雨に暴露 される環境の下で、十数年から数十年の長期にわたり使 用される。このような信号機器のうち、調整や点検のた めに内部構造の状態調査を必要としない「メンテナンス フリー」の機器は、一度、製造時に筐体内部に機器を収 容した以降は、原則、蓋やカバー等があけられることは ない。このような機器は内部の状態を目視で確認して状 態の変化を知得することや、処置を行うことが困難なた め、耐用寿命に到達するまで健全な状態が維持できるよ うに、設計段階から考慮することが特に重要である。

屋外に設置する信号機器の構造設計においては、動作 や運搬に耐える強度を有し、かつ鉄道沿線における振動 や衝撃,温度変化、水分などの使用環境に耐えることが 求められる。前者に対しては強度計算や CAE (Computer Aided Engineering) ソフトウェアによる構造解析 が、後者に対しては JIS 規格等に基づく耐環境性に関す る試験が検証ツールとして用いられてきた。しかし、い ずれの手法についても、解析や検証時の前提条件と実稼 働時の条件が異なると、解析・検証結果が実際の状態と は乖離することになる。そのため、機器の構造設計の評 価においては、対象の機器が使用される環境についてそ の実態を把握しておくことが重要である。

鉄道総研では、信号機器の使用環境の把握、および使

鉃道総研報告 Vol.37, No.8, 2023

用環境に即した寿命や性能の評価法に関する研究開発を 進めている。これまでに,信号機器室内で用いる電子機 器¹⁾,屋外設置の電子機器²⁾を対象とした温湿度環境の 把握と寿命評価手法に関する提案や,信号機器が受ける 振動に関する実態調査結果等³⁾の報告を行ってきた。 本研究では,信号機器の耐環境性の評価手法に関する研 究開発の一環として,屋外設置の信号機器における気温 や日射による温度変化,および機器の内部発熱が,機器 の筐体・蓋などの変形に与える影響に関して,試験や解 析に基づき評価する手法の検討を行った。本報では,軌 道回路機器の一つであるオイルレスインピーダンスボン ド(以下,オイルレスZB)を対象として,試験手法と 解析手法を検討した結果を述べる。また,設計・開発段 階において筐体などの変形に対する熱の影響を評価する 手法を提案する。

2. オイルレス ZB とその構造

2.1 オイルレス ZB の概要

インピーダンスボンドは、変圧器の一種であり、軌道 回路境界に設置してレールを流れる信号電流と帰線電流 を分離する役目を持つ。インピーダンスボンドの構成を 図1に示す。帰線電流は一次引出線から1次コイルを経 て中性端子に流れる。また、列車検知に用いる信号電流 は1次コイルから2次コイル(あるいはその逆)に伝わ る。コイルと鉄心から構成されたインピーダンスボンド は、帰線電流の通電によりコイルが発熱するが、コイル を浸漬する絶縁材料や筐体を介して外部に放熱される。

^{*} 信号技術研究部 信号システム研究室

^{**} 元 信号技術研究部 信号システム研究室

インピーダンスボンドは、絶縁材料の種類により、湿 式、乾式に分類される。絶縁油を用いたものを湿式、こ れに対して絶縁性の充填材を用いたものを乾式と言う。 乾式のインピーダンスボンドはオイルレス ZB とも呼ば れる。オイルレス ZB は、絶縁油の管理や交換などの作 業を省力化でき、火災などへの配慮が不要で、そして軽 量であるという利点を有しており、1990 年代に実用化 されて以来、多くの箇所で使用されている。

2.2 オイルレス ZB の構造

オイルレス ZB は、図1に示したように、金属製の筐 体の内部にコイルと鉄心、引出線用の端子などの構成部 品が収容される。製造時は筐体内部に機器を収容した上 で蓋を閉じてボルトで固定する。絶縁性の充填材は蓋に 設けた開口部から注入して内部に充填する。コイルや鉄 心、端子などは充填材に覆われるため、製造後は点検等 のために蓋を開閉することはない。そのため、水分の侵 入を防止する目的で筐体と蓋の接合部や蓋を固定するボ ルトの周囲にシール材が塗布される。シール材の種類や 塗布方法、厚さなどはオイルレス ZB の種類や部位に よって異なる。

なお,軌道回路の構成によっては共振コンデンサを接 続する場合があり,コンデンサを収容する場所が蓋や筐 体内に設けられている。軌道回路により共振コンデンサ の要否が異なり,また,定期的な外観検査を行う必要が あるため,コンデンサが収容されている部分のみ小蓋等 で開閉が可能な構造となっている。

2.3 オイルレス ZB の故障と水分の浸入

オイルレス ZB の一部において,内部の配線や端子等 の腐食や破断,絶縁性能の低下による軌道回路の不正落 下が発生している状況である。

軌道回路故障や絶縁低下により交換されたオイルレス ZBの内部において,水分の付着や筐体内側に浸透した 水分の痕跡が確認されている。水分が浸入した後の腐食 や破断,絶縁低下に至るメカニズムは,個々の製品によ り異なっているが,内部への水分の浸入の痕跡が残って いることが故障機器に共通する特徴の一つとなっている。

図1 インピーダンスボンドの構成と構造の概略

2.4 水分浸入と想定される原因

オイルレス ZB の水分の浸入は, 筐体や蓋に破損や損 傷がない健全な機器においても発生している。そのため, 筐体と蓋の間や, 中性点や1次引出線と筐体の間, およ びケーブルの引出口などの部材間の接合部位が水分の浸 入経路として考えられる。

しかし、オイルレス ZB は JIS E 3018 (インピーダン スボンド – 性能試験方法)⁴⁾ において、JIS E 3017 (鉄 道信号保安部品—防水試験方法)⁵⁾ の噴水試験を実施す ることが規定されている。そのため、オイルレス ZB は 製造段階において、屋外の降雨環境下で使用することを 前提とした防水性能を有していると考えられる。このこ とから内部への水分浸入は、①JIS E 3017 が定めてい る試験条件の想定を超えた環境での使用、②稼働中の状 態変化による防水性の喪失のいずれか、もしくは両方を 原因としたことが想定される。

そこで、オイルレス ZB の水分浸入の想定原因①について、オイルレス ZB 周辺の水位を観測し、接合部付近までの水没の有無を調査した。また、想定原因②について、帰線電流の通電や日射による温度変化の実態を調査した上で、熱による筐体・蓋の変形への影響を試験と解析の両面から検討した。

3. オイルレス ZB の使用環境調査

3.1 オイルレス ZB 周辺の水位変化

オイルレス ZB の耐水性能の前提である,水没がない 使用環境での使用について,その実態を調査した。一般 的な施工状態のオイルレス ZB のうち,故障や絶縁低下 が確認された箇所を中心とする 12 箇所の近傍に水位の 計測装置を設置して無人観測を行った(図 2)⁶⁾。2021 年 3 月から 2022 年 3 月にかけて観測を行い,最大水位 と蓋と筐体の接合面の位置関係について調査した。

測定結果の例として、ある地点における測定箇所近傍 のアメダス1時間降水量、および水位(筐体と蓋の接合 面からの相対位置)を図3に示す。計測期間中には 41mm/hを超える大雨も観測されたが、筐体と蓋の接合 面に至る水位上昇は観測されなかった。インピーダンス ボンドは、建築限界に支障しないよう低所に施工される 場合があるが、施工や降雨等による水没が発生する可能

図2 オイルレス ZB 周辺の水位自動計測

性は極めて低いことが確認された。

3.2 帰線電流の調査

オイルレス ZB は,稼働時に内部の1次コイルに通電 する帰線電流により,コイルや鉄心等の発熱によって温 度が上昇する。営業線における帰線電流の測定結果に基 づいて,一般的な使用環境を想定した試験条件(帰線電 流の大きさ,連続通電時間,および通電間隔)を設定し, 通電時の温度変化の傾向を試験により確認した。

直流電化区間の変電所吸上付近に設置されたオイルレ スZB(定格電流1000A)における帰線電流の測定結果を 図4に示す。なお、図4は中性点を流れる電流で示して おり、中性点電流の定格は2000Aである。測定は旅客電 車と電気機関車による貨物列車に対して実施し、電車で 電流最大値1240A,最大持続時間95秒,貨物列車で最 大1830A,連続46秒程度の帰線電流の通電が観測された。

3.3 通電による温度上昇

オイルレス ZB の温度変化と帰線電流の通電の関係に ついて調査を行うため、電源装置を用いて帰線電流に相 当する電流を通電してオイルレス ZB 内外の温度を計測 する試験を実施した。測定項目と試験条件を表1に示す。

測定結果として、中性点に1000A(定格の1/2)および2000A(定格)の電流を通電し、列車走行を模擬した断続的な通電を行ったとき(試験①)の1時間あたりのコイル上面の温度変化を図5に示す。列車走行を模擬して2000Aの電流を断続的に通電したとき、2分毎に

図3 水位と降水量の測定結果

図4 帰線電流の測定例

また、定格の1.5倍の電流(中性点に3000A)を1時 間通電後に定格電流(同2000A)を2時間通電したの ちに帰線電流を通電した場合(試験②)と、同様に計3 時間通電後に定格電流の1.5倍の電流を1時間通電する JIS E 3018に定める温度上昇試験と同様の条件の試験 (試験③)を実施したときの主要部の温度変化を図6に 示す。コイル上面の温度が最も高温となり、試験②で 230分経過時に66.8℃まで上昇した。また、試験③では 試験終了時に94.9℃まで上昇した。試験③が最も過酷 な条件であることから、帰線電流の通電に伴う温度上昇 に関する影響の判断にJIS E 3018の温度上昇試験を用 いることができることが示された。

3.4 外部受熱による温度上昇と変形

表1

オイルレス ZB の屋外への設置に伴う温度上昇につい て、2022 年の夏季にオイルレス ZB を屋外に設置し、 帰線電流を通電しない状態での、日射や気温の上昇に対 する各部の温度、および筐体・蓋間の変形量との関係を 調査した。表2に試験条件を示す。

通電試験の測定項目と試験条件

試験回路	JIS E 3018:2001 温度上昇試験に準じる			
供試体	直流電化区[間用 商用1000A (熱電対内蔵)		
主た測定項目	内部温度(コイル	,鉄心表面,樹脂内など12箇所),		
工な別に項目	外部温度(筐体, 蓋など)			
試験①	電流(中性点)	1000Aおよび2000A		
帰線電流	通電時隔と	2分每45秒,4分每45秒,		
相当の条件	連続通電時間	4分毎90秒,6分毎135秒		
	電流(中性点)3000A 1時間通電→			
試験(2) 温度	2000A 2時間以上通電→			
上昇+帰線電流	1000A 4分毎45秒間通電(1時間実施)			
1+F2 0 110	電流(中性点)3000A 1時間通電→			
試験③ JIS 海底上目計除	200	IOA 2時間以上通電→		
温度上并試驗		3000A 1時間通電		

図7にインピーダンスボンドを設置したビニールハウ スの温度と日射量の日平均値に対する各部の温度に関す る関係を示す。オイルレス ZB の筐体表面や各部の温度 は、周囲の温度上昇と日射の双方に影響を受け、特に日 射が十分な夏季の日中においては、筐体や蓋、コイルの 温度が上昇した。試験期間中の最高温度はそれぞれ 53.4℃,61.5℃,54.2℃であった。一方、日射がない雨天 の日は日中の温度上昇が小さく、蓋の温度上昇は3℃~ 10℃、コイルの温度上昇は3℃~8℃程度に留まった。

図8に示す後部コンデンサ箱付近A点の筐体・蓋間 の上下方向の相対変位(以下A点相対変位,正の値は 筐体・蓋間のすき間の拡大を示す)と晴天日の各部の温 度の時間推移を図9に示す。朝6時ころより熱容量の 小さい蓋が日射を直接受けることで温度が上昇し,熱容 量が比較的大きい筐体や内部の温度が時間遅れをもって 上昇する傾向を示した。また,A点相対変位は,蓋の温 度上昇が先行する朝に減少(蓋が筐体のすき間が縮小) したのち,筐体の温度上昇と共に増加(蓋と筐体のすき 間が拡大)に転じた。朝に対して日中のA点相対変位 は0.5mm 以上増加しすき間が拡大しており,外部から 水分が浸入するのに十分な幅のすき間が生じたといえ る。このように,オイルレスZBに対する日射や気温上

試驗提訴	鉄道総研 国立研究所
司马克之初广门	仮設ビニールハウス内
試験期間	2022年7月12日~12月3日
供試体	オイルレスZB(DC商用1000A)
께수고미	ハウス室温,ZB温度(内部・外部),
測正項日	筐体·蓋変位, 照度
最高気温	38.4℃ (府中アメダス,8月2日)

図8 筐体・蓋の相対変位測定点と解析モデルの外観

昇が筐体・蓋の変形に影響することが確認された。

4. 熱による筐体・蓋の変形への影響

4.1 熱応力解析によるオイルレス ZB 変形の評価

帰線電流の通電によるコイルの発熱,および気温上昇 や日射による筐体や蓋の温度上昇にともない,オイルレ スZBの筐体・蓋に変形が生じ,A点相対変位が拡大す ることを3章に述べた試験により確認した。オイルレス ZBの筐体・蓋の変形に対する熱の影響やその程度は, オイルレスZBの筐体や蓋,内部に収容されるコイル, 鉄心等の機器,および充填材などの寸法,形状や材料特 性によって異なる。

ここでは、このようなオイルレス ZB の温度に対する 筐体・蓋の変形、および設計や材料特性との関係を設計 段階で評価する手法としての有限要素法による熱応力解 析の適用性について、オイルレス ZB のモデルを作製し て解析し、実験結果と比較することで評価を行った。

4.2 モデルおよび解析条件

解析に用いたオイルレス ZB のモデルの筐体および蓋 の外観は図 8 に示したとおりである。アルミニウム製の 筐体と蓋, 銅製のコイル, 鉄心, および中性点と1次端 子から構成され, 蓋を閉じた状態の内部にエポキシ樹脂 を充填した構造とした。底部を除く筐体表面,蓋の表面, およびコイル表面を熱源として設定し,各部の温度を表

図9 オイルレス ZB の各部温度と A 点相対変位 (2022 年 8 月 3 日,晴天)

表3 解析条件(温度,充填材の線膨張係数)

	温度(℃)		(°C)	充填材 線膨張
宋阳石桥	蓋	筐体	コイル	係数 (10 ⁻⁶ /℃)
温度同一	20	20, 30, 40,,80		
	0		80	
コイル宣泪	2	20	40, 60, 80	
コイル同価	40		60, 80	
	60		80	
芙,侄休	40, 60 ,80		20	39.8
41 当 一 益	60	80	40	
同価	80		60	
蓋に 温度差	40		30	
	80	70		
	20	20 70		
を すう おうちょう かんしん おうちょう かんしん あんしん あんしん あんしん あんしん あんしん あんしん あんしん		8	ר ר	47 9

3 に示す値に設定した状態を解析した(初期温度 20℃)。また,充填材に一般的なエポキシ樹脂の線膨張 係数を用いた場合と,膨張しやすい材料の使用を想定し 線膨張係数を 1.2 倍とした場合についてそれぞれ解析を 行った。

表4に解析における各部の材料特性とその他の条件 を示す。線膨張係数を1.2倍としたエポキシ樹脂を除い た各部の材料特性については,一般的に用いられている 値のものを使用した。解析には Autodesk NASTRAN ソ ルバーを用い,内部のコイルや鉄心等と充填材の間は接 着,筐体や蓋と充填材,筐体と蓋の間は一部を除いて相 互に接触する面として扱い,接触する程度の変形が生じ た場合はペナルティ法により外力を与えることとした。

4.3 解析結果

解析結果の例として、筐体、蓋、コイルの各部を 80℃に設定したときの各部の上下方向の変形量を図10 に示す。線膨張係数が高い充填材の膨張によりアルミ製 の蓋や筐体を内部から押し広げる力が作用し、蓋中央部 が上に大きく変形した。筐体と蓋の接合面付近の蓋の変 形はボルトで固定されている部分で小さく、ボルトから 離れた位置で上に大きく変形した。また、解析を行った モデルでは、後部のコンデンサ箱付近の蓋の変形量が筐 体の変形量に比べて大きいため、蓋と筐体の間にすき間 が生じた。

温度を変化させた場合の解析結果として,図9中のA 点(コンデンサ箱付近)およびB点(側面)における 蓋と筐体のすき間を解析結果から算出した。蓋と筐体, コイルの温度を 50℃に設定したときのA点相対変位 L₅₀

表4	解析条件	(材料特性.	その他)
23.7	パナリノイト		

	部位	使用材料	線膨張係数
			(10 ⁻⁶ /°C)
	蓋,筐体	アルミニウム	23.6
****	コイル	銅	16.7
M 科特1主	コア	鋼	12.0
	端子類	真鍮	20.5
	ねじ類	ステンレス鋼	10.4
	充填材	エポキシ樹脂	39.8
ソフトウェア	ソルバー	Autodesk NASTRAN	
	プリ・ポスト	Autodesk	Fusion360
モデル	4	ノード数	366,618
	メツンユ	更表数	217 080

図 10 解析結果例(各部 80℃,上下方向変形量)

を基準とした場合の、各解析結果における相対変位 L_i の相対値 L_i/L_{50} (以下、相対すき間)を算出した。A 点の相対すき間を表5に示す。筐体、蓋およびコイルの温度上昇にともない、A 点の相対すき間は温度とともに拡大する傾向を示した。また、B 点の相対すき間は温度が同一である 50℃の場合で 21.2%、80℃の場合で 166.4% であり、いずれも A 点に比べ相対すき間が小さい。また、線膨張係数の高い充填材において相対すき間が大きくなることが確認された。

4.4 熱による変形とその影響因子

解析と実験による温度変化に対する傾向について比較 を行うため、各部の温度が50℃のときのA点の筐体と 蓋の相対すき間の解析結果、または50℃に最も近いと きの実験結果を基準とした各温度の相対すき間を算出し た結果を図11に示す。実験結果と解析結果からそれぞ れ得た相対すき間は、温度の上昇にともない増加する同 様の傾向を示した。

また、表5の解析結果から、蓋・筐体に対してコイル が高温となる場合には筐体と蓋の相対すき間が増加し、 筐体・コイルに対して蓋が高温となる場合には筐体と蓋 の相対すき間が減少する傾向となる。これらの傾向につ

表5 解析結果(A 点の相対すき間 L_i/L₅₀)

図 11 解析結果と実験結果の比較

いても、屋外試験等で確認された傾向と同様である。

このように、オイルレス ZB の内部の発熱、外部から の受熱による温度上昇が筐体・蓋の変形に影響し、変形 状態は温度が上昇する部位により異なる。また、変形の 様子は形状や使用材料にも影響を受けるため、変形量が 最大となる各部位の温度条件は特定されない。そのため、 特に構造や材料などを大きく変更する場合には、帰線電 流の通電によりコイルが温度上昇した状態、日射や気温 による筐体や蓋の温度上昇した状態、これらが複合した 状態のそれぞれに対して筐体・蓋の変形に関する評価を 行うことが必要であるといえる。

5. 設計・開発時の評価

屋外に設置し、かつ構造の変形が機能や耐久性に影響 を与える可能性がある機器に対しては、設計時や開発時 に評価を行い適切な対策をとることが必要である。評価 において着目すべき箇所や尺度は機器により異なるが、 オイルレス ZB の場合は、外観検査で知得が困難な内部 への水分浸入に影響する、筐体・蓋の変形について評価 を行うことが必要である。評価にあたっては、水分浸入 を防ぐ役割を有するシール材の変形特性とすき間の変化 量の実験や解析の結果から、設計や改良の結果、現行機 器における防水対策の妥当性を判断することができる。

図12に設計段階での熱応力解析などCAEソフト ウェアの活用による検討と,製品化段階での各種試験に よる検証を組み合わせた評価フローを示す。熱応力解析

図 13 熱による変形の形態と対応する試験方法

は設計段階における解析において有用であるが,解析条件の設定次第で解析結果が左右され,実際の変形量とも 一致しにくい場合がある。設計段階では,他の設計案や 既設計品との比較により良否を判断する。

最終的には、実機試験により評価を行う。塗布した シール材の機能確認もあわせて実施し、最終的に設計等 の結果を判断する。なお、実機試験においては、稼働状 態や使用環境に即した温度等の条件の下での試験が重要 である。オイルレス ZB については、4.4 節に述べた通 り、内部の発熱と外部の受熱、および両者が複合した状 態により変形状態が異なる。解析による事前評価を活用 しながら、図 13 に示す各状態のうち変形が見込まれる 条件での試験により評価を行うことが望まれる。

なお、コイルの温度上昇については、インピーダンス ボンドの温度上昇試験⁴⁾,機器全体の温度上昇について は信号機器の高温試験⁷⁾などの製品開発時に実施され る試験において併せて検証することが可能である。筐体 や蓋などの特定部位の温度上昇は、既存の試験方法によ る再現が困難である。熱応力解析により評価の実施が必 要と判断された場合には、ヒータ等を用いて特定部位を 加熱することで、実験的に検証することが可能である。

6. まとめ

屋外設置の信号機器における気温や日射による温度変 化や機器の内部発熱が,機器の筐体・蓋の変形に与える 影響について,オイルレス ZB を対象として試験,解析 の両面から検討を行った。その結果,温度上昇による筐 体・蓋の変形が発生し,温度の上昇部位によりその傾向 が異なることを示した。また,筐体・蓋の変形に対する 熱の影響を設計・開発段階にて評価するフローと試験手 法を提案した。今後,防水対策の検討や新規設計時の評 価等の支援に提案した手法を活用していく予定である。

謝 辞

本研究における試験の実施にあたり,東日本旅客鉄道 株式会社をはじめとする関係者には多大なご協力をいた だいた。この場を借りて厚くお礼申し上げる。

文 献

- 藤田浩由,丹羽順一,新井英樹:電子連動装置の使用環境 を考慮した寿命評価手法の開発,鉄道総研報告, Vol.32, No.5, pp.23-28, 2018
- 2)国崎愛子,藤田浩由,野村拓也,石井琢:鉄道沿線信号設備 における電子機器の寿命評価手法,鉄道総研報告, Vol.34, No.7, pp.11-16, 2020

- 3)押味良和,潮見俊輔,高崎建,神谷剛志:信号設備の振動 環境下における振動加速度調査,第29回鉄道技術連合シンボジウム講演論文集,No.S-7-4-4, pp.348-351, 2022
- 4)日本産業規格:インピーダンスボンド一性能試験方法, JIS E 3018:2001
- 5) 日本産業規格:鉄道信号保安部品一防水試験方法, JIS E

3017:2007

- 6) 佐藤輝空, 往古直之, 潮見俊輔: クラウドを利用した信号 設備の環境情報の簡易計測, 第 27 回鉄道技術連合シンポ ジウム講演論文集, No.S-2-5-4, 2020
- 7)日本産業規格:鉄道信号保安部品の高温及び低温試験方法, JISE 3019:2018

鉄道総研報告 監修スタッフ

■監修責任者			
芦谷公稔			
■編集責任者			
谷村幸裕			
■企画・監修			
川﨑邦弘	長倉 清	日比野有	高橋紀之
石毛 真	神田政幸	重枝秀紀	桃谷尚嗣
布川 修	新井英樹	福田光芳	松井元英
上半文昭	斉藤実俊	水上直樹	富田 優
小島謙一			

鉄道総研報告 第37巻 第8号 2023年8月1日 発 行 監修・発行所:公益財団法人 鉄道総合技術研究所 〒185-8540 東京都国分寺市光町2-8-38

©2023 Railway Technical Research Institute

本誌に関するお問い合わせ先 総務部広報 電話 042-573-7219

RTRI REPORT

Vol. 37 No. 8

Aug. 2023

PAPERS

Evaluation Method of Passenger Thermal Comfort Considering Effects of Airflow by Cross-flow	
Fan in Commuter Vehicles in Summer	
······H.ENDOH, S.ENAMI, F.KIKUCHI, S.YOSHIE, Y.IZUMI, J.NOGUCHI	(1)
Monitoring Method to Prevent Rail Defects due to Water Drips in Tunnel from Occurring	
••••••••••••••••••••••••••••••••••••••	(9)
Crossing Rod Breakage Detection Method Using Surveillance Camera Images	
······R.KAGEYAMA, N.NAGAMINE	(15)
Evaluation Method of Structural Design of Impedance Bonds Molded by Resin	
S. S. SHIOMI, T.SHINDO, T.KAMIYA, T.SATO, N.OKO	(21)

