Last Update 2010/12/08

  Principle of Maglev  



Maglev is a system in which the vehicle runs levitated from the guideway (corresponding to the rail tracks of conventional railways) by using electromagnetic forces between superconducting magnets on board the vehicle and coils on the ground. The following is a general explanation of the principle of Maglev.

Principle of magnetic levitation

The "8" figured levitation coils are installed on the sidewalls of the guideway. When the on-board superconducting magnets pass at a high speed about several centimeters below the center of these coils, an electric current is induced within the coils, which then act as electromagnets temporarily. As a result, there are forces which push the superconducting magnet upwards and ones which pull them upwards simultaneously, thereby levitating the Maglev vehicle.

Principle of magnetic levitation
 
Principle of lateral guidance

The levitation coils facing each other are connected under the guideway, constituting a loop. When a running Maglev vehicle, that is a superconducting magnet, displaces laterally, an electric current is induced in the loop, resulting in a repulsive force acting on the levitation coils of the side near the car and an attractive force acting on the levitation coils of the side farther apart from the car. Thus, a running car is always located at the center of the guideway.

Principle of lateral guidance
 
Principle of propulsion

A repulsive force and an attractive force induced between the magnets are used to propel the vehicle (superconducting magnet). The propulsion coils located on the sidewalls on both sides of the guideway are energized by a three-phase alternating current from a substation, creating a shifting magnetic field on the guideway. The on-board superconducting magnets are attracted and pushed by the shifting field, propelling the Maglev vehicle.

Principle of propulsion

To the Maglev top page
©Railway Technical Research Institute