正誤表（第3報）

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>268</td>
<td>式(7.7.34)</td>
<td>(M_{ud} = (M_{tu \min} - 0.2M_{td}) \cdot \sqrt{1 - \gamma_i \cdot</td>
<td>M_d</td>
<td>/M_{ud}} + 0.2M_{td})</td>
</tr>
<tr>
<td>268-269</td>
<td>7.7.6.2</td>
<td>(M_{tu \min})</td>
<td>(M_{tu \min})</td>
<td>1刷</td>
</tr>
<tr>
<td></td>
<td>(5) (6)</td>
<td></td>
<td>※「tu」 と「min」の間にスペースを入れる</td>
<td></td>
</tr>
</tbody>
</table>

以上，2023年8月24日追加
正誤表（第3報）

正誤表

書名
令和5年1月 鉄道構造物等設計標準・同解説（コンクリート構造物） 第Ⅲ編 コンクリート構造

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>390</td>
<td>付属表3-1.5</td>
<td></td>
<td></td>
<td>1刷</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試験</th>
<th>通用基準の深さ</th>
<th>鉄道構造物等設計標準・同解説（コンクリート構造物） (a) びび割れあり</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>45 % 130 55</td>
<td>50 % 125 70</td>
</tr>
<tr>
<td>50 % 140 85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 % 150 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>45 % 135 60</td>
<td>50 % 140 70</td>
</tr>
<tr>
<td>55 % 150 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>50 % 140 80</td>
<td>50 % 150 90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試験</th>
<th>通用基準の深さ</th>
<th>鉄道構造物等設計標準・同解説（コンクリート構造物） (a) びび割れあり</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>45 % 130 55</td>
<td>50 % 125 70</td>
</tr>
<tr>
<td>50 % 140 85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 % 150 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>45 % 135 60</td>
<td>50 % 140 70</td>
</tr>
<tr>
<td>55 % 150 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>50 % 140 80</td>
<td>50 % 150 90</td>
</tr>
</tbody>
</table>

以上、2023年8月4日追加
正誤表（第3報）
書名 令和5年1月 鉄道構造物等設計標準・同解説（コンクリート構造物） 第3編 コンクリート構造

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>2.3.7.5 解説図 2.3.21(b)</td>
<td>≧ lₜ₀</td>
<td>≧ l₀</td>
<td>1刷</td>
</tr>
<tr>
<td>56</td>
<td>解説図 2.3.27</td>
<td>定着長</td>
<td>定着長</td>
<td>定着長</td>
</tr>
<tr>
<td>122</td>
<td>式（解 4.2.11）</td>
<td>Eₜ：載荷時の有効材齢 t′（日）におけるコンクリートのヤング係数（kN）</td>
<td>Eₜ：載荷時の有効材齢 t′（日）におけるコンクリートのヤング係数（kN/mm²）</td>
<td>1刷</td>
</tr>
<tr>
<td>153</td>
<td>4.4.7 解説</td>
<td>（1）について</td>
<td>（2）について</td>
<td>1刷</td>
</tr>
</tbody>
</table>
正誤表（第3報）

書名 | 令和5年1月 鉄道構造物等設計標準・同解説（コンクリート構造物） 第Ⅲ編 コンクリート構造

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>4.4.7 解説</td>
<td>（2）について</td>
<td>（3）について</td>
<td>1刷</td>
</tr>
<tr>
<td>154</td>
<td>4.4.7 解説</td>
<td>（3）について</td>
<td>（4）について</td>
<td>1刷</td>
</tr>
<tr>
<td>155</td>
<td>4.4.7 解説</td>
<td>（4）について</td>
<td>（5）について</td>
<td>1刷</td>
</tr>
</tbody>
</table>
正誤表（第3報）

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>192~193</td>
<td>解説6.1.2</td>
<td></td>
<td></td>
<td>1刷</td>
</tr>
<tr>
<td>197</td>
<td>6.3.2 解説</td>
<td>...適用性が確かめられたものである1)~4)</td>
<td>...適用性が確かめられたものである1)~5)</td>
<td>1刷</td>
</tr>
</tbody>
</table>

解説

適用性が確かめられたものである1)~4)。
正誤表（第3報）

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>197</td>
<td>6.3.2 解説</td>
<td>…ほぼ等価な結果が得られる。</td>
<td>…ほぼ等価な結果が得られる。</td>
<td>1刷</td>
</tr>
<tr>
<td>217</td>
<td>参考文献</td>
<td>5) 土屋智史，牧剛史，斉藤成彦，渡邊忠朋，前川宏一: 非線形有限要素解析によるRC面材の損傷指標と耐力評価，土木学会論文集E2（材料・コンクリート構造），Vol.68，No.3，pp.209-22，2012。</td>
<td>5) 牧剛史，土屋智史，斉藤成彦，渡邊忠朋：コンクリートの損傷指標を用いたRC部材の三次元耐荷機構の数値解析的評価，土木学会論文集E2（材料・コンクリート構造），Vol.78，No.1，pp.121-137，2022。</td>
<td>1刷</td>
</tr>
<tr>
<td>238</td>
<td>7.6.1 解説</td>
<td>…これまでの研究によりと。</td>
<td>…これまでの研究によりと。</td>
<td>1刷</td>
</tr>
<tr>
<td>238</td>
<td>7.6.1 解説</td>
<td>…を参考に定めたものである。</td>
<td>…を参考に定めたものである。</td>
<td>1刷</td>
</tr>
</tbody>
</table>

注: 2023年8月24日更新

書名 令和5年1月 鉄道構造物等設計標準・同解説（コンクリート構造物） 第三編 コンクリート構造
<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>242</td>
<td>7.7.1 解説</td>
<td>…異なることが実験的に明らかにされている8)。</td>
<td>…異なることが実験的に明らかにされている9)。</td>
<td>1刷</td>
</tr>
<tr>
<td>246</td>
<td>7.7.2.1 解説</td>
<td>…既往の研究成果9)により得られた…</td>
<td>…既往の研究成果10)により得られた…</td>
<td>1刷</td>
</tr>
<tr>
<td>248</td>
<td>7.7.2.1 解説</td>
<td>…実験結果と良好な適合性を得られていることが確かめられている10)。</td>
<td>…実験結果と良好な適合性を得られていることが確かめられている12)。</td>
<td>1刷</td>
</tr>
<tr>
<td>248</td>
<td>7.7.2.1 解説</td>
<td>…計算上のせん断補強鋼材が受け持つせん断耐力までせん断耐力が増加しない場合がある。</td>
<td>…計算上のせん断補強鋼材が受け持つせん断耐力までせん断耐力が増加しない場合がある13, 14)。</td>
<td>1刷</td>
</tr>
</tbody>
</table>
正誤表（第3報）

書名 令和5年1月 鉄道構造物等設計標準・同解説（コンクリート構造物） 第Ⅲ編 コンクリート構造

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>248</td>
<td>7.7.2.1 解説</td>
<td>…数値解析法を用いた検討によって定められたものである 11),13).</td>
<td>…数値解析法を用いた検討によって定められたものである 13).</td>
<td>1刷</td>
</tr>
<tr>
<td>248</td>
<td>7.7.2.1 解説</td>
<td>…仮想トラスの引張腹材としてせん断力の抵抗が十分に発揮できない場合がある 14),15),16).</td>
<td>…仮想トラスの引張腹材としてせん断力の抵抗が十分に発揮できない場合がある 15),16),17).</td>
<td>1刷</td>
</tr>
<tr>
<td>249</td>
<td>7.7.2.1 解説</td>
<td>…その妥当性が検証されたため 17).</td>
<td>…その妥当性が検証されたため 18).</td>
<td>1刷</td>
</tr>
<tr>
<td>249</td>
<td>7.7.2.1 解説</td>
<td>ここでは，既往の研究成果 18)により得られた式…</td>
<td>ここでは，既往の研究成果 19)により得られた式…</td>
<td>1刷</td>
</tr>
<tr>
<td>頁</td>
<td>項目</td>
<td>誤</td>
<td>正</td>
<td>対象刷</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>249</td>
<td>7.7.2.1 解説</td>
<td>せん断補強効果があることが明らかにされており 19),20),</td>
<td>せん断補強効果があることが明らかにされており 20),21),</td>
<td>1刷</td>
</tr>
<tr>
<td>249</td>
<td>7.7.2.1 解説</td>
<td>せん断補強効果のあることが実験的に認められている 21)</td>
<td>せん断補強効果のあることが実験的に認められている 22)</td>
<td>1刷</td>
</tr>
<tr>
<td>249</td>
<td>7.7.2.1 解説</td>
<td>式(解 7.7.12)で表される 22)</td>
<td>式(解 7.7.12)で表される 23)</td>
<td>1刷</td>
</tr>
</tbody>
</table>
| 250 | 7.7.2.1 解説 | 修正トラス理論に基づく設計せん断耐力算定式
(式(解 7.7.13)) により算定してよい 23) | 修正トラス理論に基づく設計せん断耐力算定式
(式(解 7.7.13)) により算定してよい 24) | 1刷 |
正誤表（第3報）

書名 令和5年1月 鉄道構造物等設計標準・同解説（コンクリート構造物） 第III編 コンクリート構造

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>252</td>
<td>7.7.2.2 （1）</td>
<td>$f_{vtd} = 0.23f'_{cd}2/3$</td>
<td>$f_{vtd} = 0.23f'_{cd}^{2/3}$</td>
<td>1刷</td>
</tr>
<tr>
<td>254</td>
<td>7.7.2.2 解説</td>
<td>…その効果を評価しようとするものである 24).</td>
<td>…その効果を評価しようとするものである 25).</td>
<td>1刷</td>
</tr>
<tr>
<td>254</td>
<td>7.7.2.2 解説</td>
<td>…圧縮ストラットの角度を用いた方法は精度が向上することが確かめられている 25).</td>
<td>…圧縮ストラットの角度を用いた方法は精度が向上することが確かめられている 26).</td>
<td>1刷</td>
</tr>
<tr>
<td>254</td>
<td>7.7.2.2 解説</td>
<td>…引張側鋼材として考慮してはならない 26).</td>
<td>…引張側鋼材として考慮してはならない 27).</td>
<td>1刷</td>
</tr>
</tbody>
</table>
正誤表（第3報）

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>259</td>
<td>7.7.4 解説</td>
<td>既往の研究報告27),28)によると，…</td>
<td>既往の研究報告28),29)によると，…</td>
<td>1刷</td>
</tr>
<tr>
<td>271</td>
<td>7.8.1 解説</td>
<td>…により算定することができる29),30)</td>
<td>…により算定することができる30),31)</td>
<td>1刷</td>
</tr>
<tr>
<td>276</td>
<td>7.9.1 解説</td>
<td>…変形性能等が異なることが確かめられている31)</td>
<td>…変形性能等が異なることが確かめられている32)</td>
<td>1刷</td>
</tr>
<tr>
<td>279</td>
<td>7.9.2 解説</td>
<td>…正規化累加ひずみエネルギーW_nを指標としてよい32)</td>
<td>…正規化累加ひずみエネルギーW_nを指標としてよい33)</td>
<td>1刷</td>
</tr>
</tbody>
</table>

令和5年1月　鉄道構造物等設計標準・同解説（コンクリート構造物）　第Ⅲ編 コンクリート構造
正誤表（第3報）

<table>
<thead>
<tr>
<th>書名</th>
<th>令和5年1月 鉄道構造物等設計標準・同解説（コンクリート構造物） 第IIIII編 コンクリート構造</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>7.9.2 解説</td>
<td>…半径 150mm の球または円としてよい 32).</td>
<td>…半径 150mm の球または円としてよい 33).</td>
<td>1刷</td>
</tr>
</tbody>
</table>

| 322 | 解説表 8.8.3 | | | 1刷 |

| 334 | 解説表 8.8.9 | | | 1刷 |

| 338 | 式（解 8.8.6） | $A_w : d \cdot \cot \theta$ 範囲に配置されるせん断補強鉄筋比（mm^2） | $A_w : d \cdot \cot \theta$ 範囲に配置されるせん断補強鉄筋の総断面積（mm^2） | 1刷 |
正誤表（第3報）

書名 令和5年1月 鉄道構造物等設計標準・同解説（コンクリート構造物） 第Ⅲ編 コンクリート構造

<table>
<thead>
<tr>
<th>頁</th>
<th>項目</th>
<th>誤</th>
<th>正</th>
<th>対象刷</th>
</tr>
</thead>
<tbody>
<tr>
<td>491</td>
<td>付属資料8-4 3.1.1（7）3</td>
<td>場所打ち杭の軸方向鉄筋のフーチング内への定着長は、フーチング下端から定着が有効とならない範囲の長さ（付着力の低下区間）に、基本定着長L_{d02}を加えた長さとする。lは鉄筋の直径の5倍としてよい。</td>
<td>場所打ち杭の軸方向鉄筋のフーチング内への定着長は、フーチング下端から定着が有効とならない範囲の長さ（付着力の低下区間）l'に、基本定着長L_{d01}を加えた長さとする。l'は鉄筋の直径の5倍としてよい。</td>
<td>1刷</td>
</tr>
</tbody>
</table>

以上、2023年6月16日追加