変圧器の寿命判定法

鉄道総合技術研究所電力技術研究部(き電)

- Railway Technical Research Institute -

□ 変電所電力設備の保全状況

・電気学会による変圧器の劣化モデル検討例

電気的影響	機械的影響	熱的影響	環境的影響
◎アークによる ガス発生◎部分放電◎雷電圧に よる放電◎ボイド(空隙)での 電界集中◎巻線の短絡故障	◎変形や位置ずれ(短絡電流や雷起因)◎亀裂や剥離(熱劣化)	◎熱で分解◎酸化◎熱応力	◎表面汚損に よる絶縁低下◎吸湿による 絶縁低下◎異物混入◎異物の脱落

- 変圧器の故障原因調査
- ・出典:電気学会、電力機器・設備の 絶縁診断技術、オーム社、2015
- →種々の要因(主に4つの影響)が挙げられる
- ・特に雷・短絡事故・地震等の際に劣化進展の可能性
- ・絶縁紙の長期的な劣化は、熱的な影響が支配的

□変電所電力設備の保全状況

・電気学会による設備取り替え周期の調査事例(鉄道)

	受電用変圧器		配電用変圧器		シリコン整流器 用変圧器	
鉄道会社名	計画	実際	計画	実際	計画	実際
А	30Y(年)	30~35	30	30~35	30	28~36
В	30	32~38	30	30~35	30	31~41

·出典:平成21年電気学会全国大会5-S18-5

- ・製造メーカーの一般的な取り替え推奨は<u>30年</u> ・計画に対して実際の取り替え時期は数年遅れがち

- Railway Technical Research Institute

□ 変電所電力設備の保全状況

・JEMA(日本電機工業会)による設備取り替え周期の調査事例

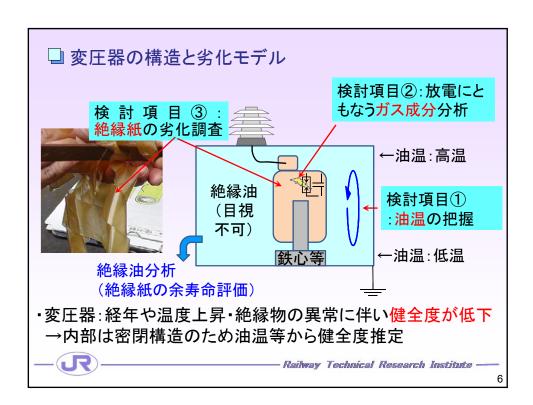
設備	目視点検	精密点検	診断・ オーバー ホール	推奨 取り替え 周期	ユーザー の期待 寿命
GCB	1Y~3Y	6Y	15Y(年)	20Y	25.7Y
油入変圧器	1Y~3Y	6Y	20Y	25Y	27.6Y
GIS	1Y~3Y	6Y	20Y	25Y	28Y
デジタル 保護リレー	1Y~3Y	6Y	12Y	15Y	18.2Y

・出典:JEMA webページ(2013/9)

http://www.jema-net.or.jp/jema/data/2013substation.pdf

•推奨寿命に対して期待寿命は数年長め

□ 変圧器の寿命判定法


- ・取り替え周期平準化などの観点から<mark>設備寿命延伸</mark> の要求が高まっている
- 上記を踏まえた変圧器用絶縁紙の撤去品分析、 絶縁油分析による絶縁紙健全度の推定

□ 検討結果の概要

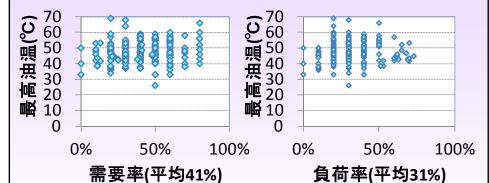
- ①事業者データを収集し運用環境や劣化状況を調査
 - ・油入変圧器→最高油温は60℃以下(余裕有り)
 - 高配用変圧器の油中ガスは注意検体が多い
- ②余寿命の評価方法の検討
 - 絶縁紙余寿命評価に適した劣化推定特性を提案
 - ・計68サンプルの絶縁紙劣化度を評価 →寿命レベルと同等かそれ以上の健全性を維持

R

- Railway Technical Research Institute -

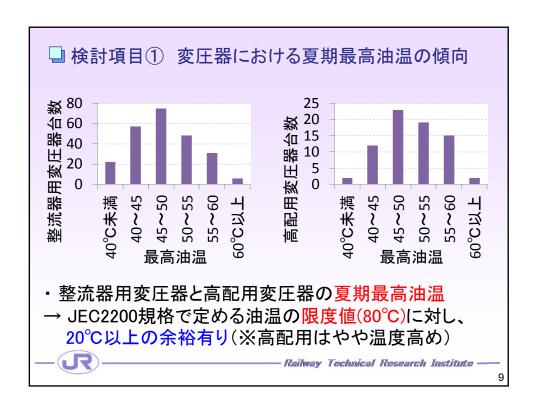
□ 調査対象の変圧器について

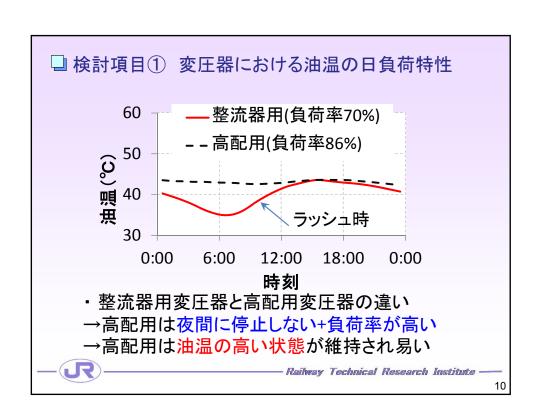
★下記鉄道事業者殿データを調査・統計処理


設備群	油温・ 負荷率データ	油中ガス分析 データ	フルフラール量 データ
整流器用変圧器	239	182	42
配電用変圧器	73	60	21
き電用変圧器等	13	20	6
所内用変圧器	_	6	_
油入整流器	_	16	_
合計(設備数量)	325台	284台	69台
調査の趣旨	温度上昇による 劣化把握	放電による 劣化把握	絶縁紙の 健全度把握

- Railway Technical Research Institute -

7


□ 検討項目① 整流器用変圧器における油温の傾向



- ・整流器用変圧器:統計分析(t分析手法)で検定
- →夏期最高油温と需要率・負荷率との相関関係無し
- ・高配用変圧器も同様の特性

R

- Railway Technical Research Institute

□ 検討項目② 油中ガスデータの分析状況

・油中ガス分析周期の調査事例(鉄道会社・電力会社)

鉄道会社 保守区	A電力区	B電力区	C電力区	D電力区	E電力区
油中ガスの 分析周期	経年10年以上の 機器を対象に 5年おき		おき	l	おき :1年おき)

電力会社	電力会社①		電力会社②		電力会社③	
適用箇所	154kV以上 の主要系統		送電用	配電用	送電用	配電用
設定周期(文献※)	1年	3年	1年	3年	2年	3年

※出典: 電気学会技術報告Ⅱ-第344号「変圧器の予防保全技術の現状とその動向」

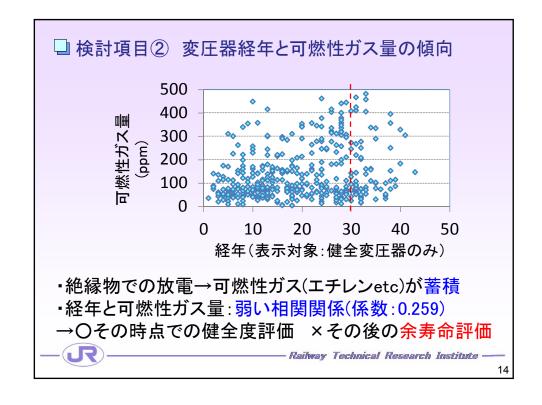
・電力会社の一般的な周期よりやや長めの分析周期・フルフラール量分析は概ね経年20年以上を対象

- Railway Technical Research Institute -

11

□ 検討項目② 油中ガスデータの分析状況

・油中ガス分析の統計処理結果

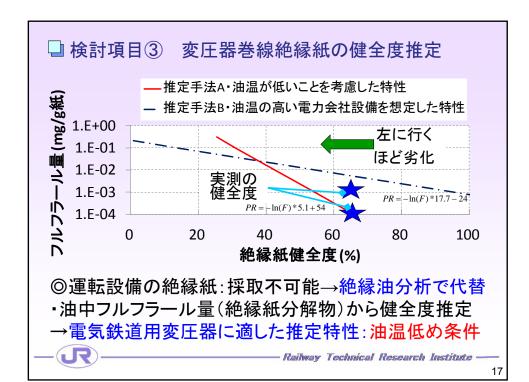

設備群	変圧器の 調査台数 (箇所数)	油中ガスの検体数	注意判定 (検体数)	各設備群 に対する 注意判定 検体数の割合	各設備群の 平均経年 (検体数基準)
油入整流器	16	31	10	32%	22.7 年
整流器用変圧器	182	350	40	11%	18.5年
高配用変圧器	60	114	48	42%	17.6年
き電用変圧器等	20	33	6	18%	24.0年
所内用変圧器	6	6	1	17%	28.5年
合計	284台	534検体	105検体	_	18.3年

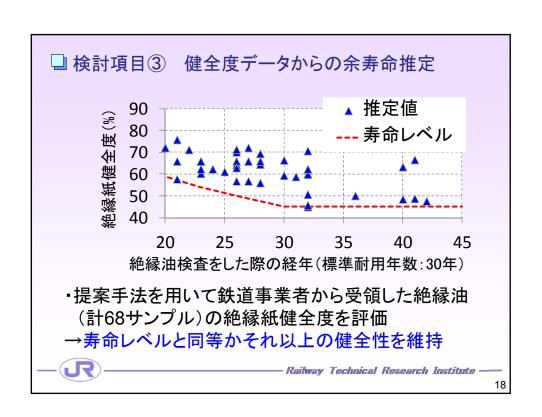
- ・高配用変圧器:注意判定となった検体数が多い
- ・想定される原因→高配用:油温が高め

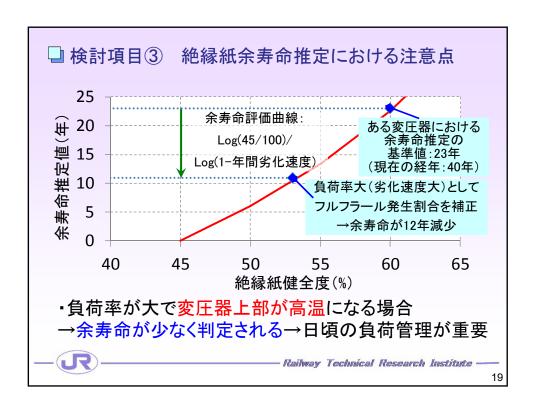
整流器用:短時間過負荷に耐える頑強な構造

□ 検討項目③ 変圧器巻線絶縁紙の 余寿命評価手法の検討

- ・フルフラール: 絶縁紙の主成分であるセルロース 分子から分解された有機物(絶縁油中に溶解) 代表的な化学式: (C₄H₃O)CHO
- ・絶縁紙の劣化度(健全度)評価:平均重合度 (分子の結合具合を示す指標・巻線の機械強度と関係)
- 初期値: 100%、経年や油温上昇に伴い数値が低下




- Railway Technical Research Institute


□ 検討項目③ 変圧器巻線絶縁紙の健全度実測例

経年	絶縁紙健全 <i>(初期値の4</i>	用途		
	変圧器上部	変圧器下部		
34	56 % 65%		電力会社(※)	
37	50% 68%		電力会社(※)	
36	65%	64%	電気鉄道用-1	
41	65% 66%		電気鉄道用-2	

- •老朽化により解体された油入変圧器の絶縁紙を採取
- →健全度(絶縁紙:セルロースの重合度)を評価
- ・変圧器上部→比較的高温の環境(劣化し易い)
- 電気鉄道用変圧器→それほど劣化していない

🖵 変圧器の寿命判定法

- ・取り替え周期平準化などの観点から<mark>設備寿命延伸</mark> の要求が高まっている
- ・上記を踏まえた変圧器用絶縁紙の<mark>撤去品分析、</mark> 絶縁油分析による絶縁紙健全度の推定

□ 検討結果の概要

- ①事業者データを収集し運用環境や劣化状況を調査
 - ・油入変圧器→最高油温は60℃以下(余裕有り)
 - ・高配用変圧器の油中ガスは注意検体が多い
- ②余寿命の評価方法の検討
 - ・絶縁紙余寿命評価に適した劣化推定特性を提案
 - ・計68サンプルの絶縁紙劣化度を評価 →寿命レベルと同等かそれ以上の健全性を維持

R

- Railway Technical Research Institute